Quasi-Frobenius Rings and Nakayama Permutations of Semiperfect Rings
We say that A is a ring with duality for simple modules, or simply a DSM-ring, if, for every simple right (left) A-module U, the dual module U* is a simple left (right) A-module. We prove that a semiperfect ring is a DSM-ring if and only if it admits a Nakayama permutation. We introduce the notion o...
Saved in:
Date: | 2002 |
---|---|
Main Authors: | Dokuchaev, M.A., Kirichenko, V.V. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2002
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Quasi-Frobenius Rings and Nakayama Permutations of Semiperfect Rings / M.A. Dokuchaev, V.V. Kirichenko // Український математичний журнал. — 2002. — Т. 54, № 7. — С. 919–930. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Quasi-Frobenius Rings and Nakayama Permutations of Semiperfect Rings
by: Dokuchaev, M.A., et al.
Published: (2002) -
Exponent matrices and Frobenius rings
by: Dokuchaev, M.A., et al.
Published: (2014) -
Exponent matrices and Frobenius rings
by: Dokuchaev, M.A., et al.
Published: (2014) -
Exponent matrices and Frobenius rings
by: Dokuchaev, M. A., et al.
Published: (2018) -
Exponent matrices and Frobenius rings
by: M. A. Dokuchaev, et al.
Published: (2014)