Integral manifolds for semilinear evolution equations and admissibility of function spaces

We prove the existence of integral (stable, unstable, and center) manifolds for the solutions to a semilinear integral equation in the case where the evolution family (U(t, s)) t≥s has an exponential trichotomy on a half line or on the whole line, and the nonlinear forcing term f satisfies the φ-Li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Vu Thi Ngoc Ha, Nguyen Thieu Huy, Ha Phi
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Schriftenreihe:Український математичний журнал
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Integral manifolds for semilinear evolution equations and admissibility of function spaces / Vu Thi Ngoc Ha, Nguyen Thieu Huy, Ha Phi // Український математичний журнал. — 2012. — Т. 64, № 6. — С. 772-796. — Бібліогр.: 37 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id oai:nasplib.isofts.kiev.ua:123456789-164414
record_format dspace
spelling oai:nasplib.isofts.kiev.ua:123456789-1644142025-02-09T15:07:15Z Integral manifolds for semilinear evolution equations and admissibility of function spaces Інтегральнi многовиди для напiвлiнiйних еволюцiйних рiвнянь та допустимiсть просторiв функцiй Vu Thi Ngoc Ha Nguyen Thieu Huy Ha Phi Статті We prove the existence of integral (stable, unstable, and center) manifolds for the solutions to a semilinear integral equation in the case where the evolution family (U(t, s)) t≥s has an exponential trichotomy on a half line or on the whole line, and the nonlinear forcing term f satisfies the φ-Lipschitz conditions, i.e., where φ(t) belongs to some classes of admissible function spaces. Our main method is based on the Lyapunov–Perron methods, rescaling procedures, and the techniques of using the admissibility of function spaces. Доведено iснування iнтегральних (стiйких, нестiйких, центральних) многовидiв для розв’язкiв напiвлiнiйного iнтегрального рiвняння у випадку, коли сiм’я еволюцiй (U(t,s))tleqs має експоненцiальну трихотомiю на пiвосi або на всiй осi, а нелiнiйний збурюючий член f задовольняє φ-лiпшицевi умови, тобто належить до деяких класiв допустимих просторiв функцiй. Наш основний метод базується на методах Ляпунова – Перрона, процедурах перемасштабування та технiцi застосування допустимостi просторiв функцiй. On leave from Hanoi University of Science and Technology as a research fellow of the Alexander von Humboldt Foundation at Technical University of Darmstadt. The support by the Alexander von Humboldt Foundation is gratefully acknowledged. The author thanks Prof. Matthias Hieber for his strong support and inspiration. This work is financially supported by the Vietnamese National Foundation for Science and Technology Development (NAFOSTED) under Project 101.01-2011.25. 2012 Article Integral manifolds for semilinear evolution equations and admissibility of function spaces / Vu Thi Ngoc Ha, Nguyen Thieu Huy, Ha Phi // Український математичний журнал. — 2012. — Т. 64, № 6. — С. 772-796. — Бібліогр.: 37 назв. — англ. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/164414 517.9 en Український математичний журнал application/pdf Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Vu Thi Ngoc Ha
Nguyen Thieu Huy
Ha Phi
Integral manifolds for semilinear evolution equations and admissibility of function spaces
Український математичний журнал
description We prove the existence of integral (stable, unstable, and center) manifolds for the solutions to a semilinear integral equation in the case where the evolution family (U(t, s)) t≥s has an exponential trichotomy on a half line or on the whole line, and the nonlinear forcing term f satisfies the φ-Lipschitz conditions, i.e., where φ(t) belongs to some classes of admissible function spaces. Our main method is based on the Lyapunov–Perron methods, rescaling procedures, and the techniques of using the admissibility of function spaces.
format Article
author Vu Thi Ngoc Ha
Nguyen Thieu Huy
Ha Phi
author_facet Vu Thi Ngoc Ha
Nguyen Thieu Huy
Ha Phi
author_sort Vu Thi Ngoc Ha
title Integral manifolds for semilinear evolution equations and admissibility of function spaces
title_short Integral manifolds for semilinear evolution equations and admissibility of function spaces
title_full Integral manifolds for semilinear evolution equations and admissibility of function spaces
title_fullStr Integral manifolds for semilinear evolution equations and admissibility of function spaces
title_full_unstemmed Integral manifolds for semilinear evolution equations and admissibility of function spaces
title_sort integral manifolds for semilinear evolution equations and admissibility of function spaces
publisher Інститут математики НАН України
publishDate 2012
topic_facet Статті
citation_txt Integral manifolds for semilinear evolution equations and admissibility of function spaces / Vu Thi Ngoc Ha, Nguyen Thieu Huy, Ha Phi // Український математичний журнал. — 2012. — Т. 64, № 6. — С. 772-796. — Бібліогр.: 37 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT vuthingocha integralmanifoldsforsemilinearevolutionequationsandadmissibilityoffunctionspaces
AT nguyenthieuhuy integralmanifoldsforsemilinearevolutionequationsandadmissibilityoffunctionspaces
AT haphi integralmanifoldsforsemilinearevolutionequationsandadmissibilityoffunctionspaces
AT vuthingocha íntegralʹnimnogovididlânapivlinijnihevolûcijnihrivnânʹtadopustimistʹprostorivfunkcij
AT nguyenthieuhuy íntegralʹnimnogovididlânapivlinijnihevolûcijnihrivnânʹtadopustimistʹprostorivfunkcij
AT haphi íntegralʹnimnogovididlânapivlinijnihevolûcijnihrivnânʹtadopustimistʹprostorivfunkcij
first_indexed 2025-09-17T06:36:10Z
last_indexed 2025-09-17T06:36:10Z
_version_ 1843491998144659456