On the maximal operator of (C, α)-means of Walsh–Kaczmarz–Fourier series
Simon [J. Approxim. Theory, 127, 39–60 (2004)] proved that the maximal operator σα,κ,* of the (C, α)-means of the Walsh–Kaczmarz–Fourier series is bounded from the martingale Hardy space H p to the space L p for p > 1 / (1 + α), 0 < α ≤ 1. Recently, Gát and Goginava have proved that this bound...
Saved in:
Date: | 2010 |
---|---|
Main Authors: | Goginava, U., Nagy, K. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2010
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On the maximal operator of (C, α)-means of Walsh–Kaczmarz–Fourier series / U. Goginava, K. Nagy // Український математичний журнал. — 2010. — Т. 62, № 2. — С. 158–166. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On the maximal operator of (C, α)-means of Walsh–Kaczmarz–Fourier series
by: Goginava, U., et al.
Published: (2010) -
Approximation by Norlund means of quadratical partial sums of double Walsh - Kaczmarz - Fourier series
by: K. Nagy
Published: (2016) -
On the summability of double Walsh–fourier series of functions of bounded generalized variation
by: Goginava, U.
Published: (2012) -
On the summability of double Walsh–fourier series of functions of bounded generalized variation
by: Goginava, U.
Published: (2012) -
Strong Convergence of Two-Dimensional Walsh–Fourier Series
by: Tephnadze, G.
Published: (2013)