First eigenvalue of the Laplace operator and mean curvature

The main theorem of this paper states a relation between the first nonzero eigenvalue of Laplace operator and the squared norm of mean curvature in irreducible compact homogeneous manifolds under spatial conditions. This statement has some results that states in the remainder of paper.

Saved in:
Bibliographic Details
Date:2008
Main Author: Etemad, A.
Format: Article
Language:English
Published: Інститут математики НАН України 2008
Series:Український математичний журнал
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:First eigenvalue of the Laplace operator and mean curvature / A. Etemad // Український математичний журнал. — 2008. — Т. 60, № 7. — С. 1000–1003. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:The main theorem of this paper states a relation between the first nonzero eigenvalue of Laplace operator and the squared norm of mean curvature in irreducible compact homogeneous manifolds under spatial conditions. This statement has some results that states in the remainder of paper.