Nonlinear-estimate approach to the regularity of infinite-dimensional parabolic problems

We show how the use of nonlinear symmetries of higher-order derivatives allows one to study the regularity of solutions of nonlinear differential equations in the case where the classical Cauchy-Liouville-Picard scheme is not applicable. In particular, we obtain nonlinear estimates for the boundedne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2006
Hauptverfasser: Antoniouk, A.Val., Antoniouk, A.Vict.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2006
Schriftenreihe:Український математичний журнал
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Nonlinear-estimate approach to the regularity of infinite-dimensional parabolic problems / A.Val. Antoniouk, A.Vict. Antoniouk // Український математичний журнал. — 2006. — Т. 58, № 5. — С. 579–596. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We show how the use of nonlinear symmetries of higher-order derivatives allows one to study the regularity of solutions of nonlinear differential equations in the case where the classical Cauchy-Liouville-Picard scheme is not applicable. In particular, we obtain nonlinear estimates for the boundedness and continuity of variations with respect to initial data and discuss their applications to the dynamics of unbounded lattice Gibbs models.