Generalizations of ⊕ -supplemented modules
We introduce ⊕-radical supplemented modules and strongly ⊕-radical supplemented modules (briefly, srs⊕-modules) as proper generalizations of ⊕-supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every left R-module is an ⊕-radical supplemented module; (2) a co...
Saved in:
Date: | 2013 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2013
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Generalizations of ⊕ -supplemented modules / B.N. Türkmen, A. Pancar // Український математичний журнал. — 2013. — Т. 65, № 4. — С. 555-564. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | We introduce ⊕-radical supplemented modules and strongly ⊕-radical supplemented modules (briefly, srs⊕-modules) as
proper generalizations of ⊕-supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every
left R-module is an ⊕-radical supplemented module; (2) a commutative ring R is an Artinian principal ideal ring if and
only if every left R-module is a srs⊕-module; (3) over a local Dedekind domain, every ⊕-radical supplemented module
is a srs⊕-module. Moreover, we completely determine the structure of these modules over local Dedekind domains. |
---|