Fredholm Solvability of a Periodic Neumann Problem for a Linear Telegraph Equation
We investigate a periodic problem for the linear telegraph equation utt − uxx + 2µut = f(x, t) with Neumann boundary conditions. We prove that the operator of the problem is modeled by a Fredholm operator of index zero in the scale of Sobolev spaces of periodic functions. This result is stable un...
Saved in:
Date: | 2013 |
---|---|
Main Author: | Kmit, I. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2013
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Fredholm Solvability of a Periodic Neumann Problem for a Linear Telegraph Equation / I. Kmit // Український математичний журнал. — 2013. — Т. 65, № 3. — С. 381-391. — Бібліогр.: 24 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Fredholm Solvability of a Periodic Neumann Problem for a Linear Telegraph Equation
by: Kmit, I.
Published: (2013) -
Fredholm solvability of a periodic Neumann problem for a linear telegraph equation
by: I. Kmit
Published: (2013) -
On the solvability of an inverse problem to the linear autonomous integral-differential equation of the Fredholm type with a degenerate kernel
by: S. M. Chuiko, et al.
Published: (2022) -
Fredholm quasi-linear manifolds and degree of Fredholm quasi-linear mapping between them
by: Abbasov, A.
Published: (2011) -
Fredholm quasi-linear manifolds and degree of Fredholm quasi-linear mapping between them
by: Abbasov, A.
Published: (2011)