Thin Subsets of Groups
For a group G and a natural number m, a subset A of G is called m-thin if, for each finite subset F of G, there exists a finite subset K of G such that |Fg ∩ A| ≤ m for all g ∈ G \ K. We show that each m-thin subset of an Abelian group G of cardinality ℵn, n = 0, 1, . . . can be split into ≤ mⁿ⁺¹ 1-...
Saved in:
Date: | 2013 |
---|---|
Main Authors: | Protasov, I.V., Slobodyanyuk, S. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2013
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Thin Subsets of Groups / I.V. Protasov, S. Slobodyanyuk // Український математичний журнал. — 2013. — Т. 65, № 9. — С. 1245–1253. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Thin Subsets of Groups
by: Protasov, I.V., et al.
Published: (2013) -
Relatively thin and sparse subsets of groups
by: Lutsenko, Ie., et al.
Published: (2011) -
Relatively thin and sparse subsets of groups
by: Lutsenko, Ie., et al.
Published: (2011) -
Thin Subsets of Groups
by: I. V. Protasov, et al.
Published: (2013) -
Scattered Subsets of Groups
by: Banakh, T.O., et al.
Published: (2015)