Стабільні квазіпорядки на деяких переставних інверсних моноїдах

Пусть G — произвольная группа биекций на конечном множестве. Обозначим через I(G) множество всех инъекций, каждая из которых включается в биекцию из G. Множество I(G) относительно обычной операции композиции бинарных отношений образует инверсный моноид. В данной статье изучаются различные свойства п...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
1. Verfasser: Дереч, В.Д.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут математики НАН України 2014
Schriftenreihe:Український математичний журнал
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Стабільні квазіпорядки на деяких переставних інверсних моноїдах / В.Д. Дереч // Український математичний журнал. — 2014. — Т. 66, № 4. — С. 445–457. — Бібліогр.: 16 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Пусть G — произвольная группа биекций на конечном множестве. Обозначим через I(G) множество всех инъекций, каждая из которых включается в биекцию из G. Множество I(G) относительно обычной операции композиции бинарных отношений образует инверсный моноид. В данной статье изучаются различные свойства полугруппы I(G). В частности, установлены необходимые и достаточные условия для того, чтобы инверсный моноид I(G) был перестановочным (т. е. ξ○φ=φ○ξ для любой пары конгруэнций ξ,φ на I(G)), и в этом случае описана структура каждой конгруэнции на I(G). Приведено описание стабильных порядков на I(An), где An — альтернативная группа.