Strongly semicommutative rings relative to a monoid
For a monoid M, we introduce strongly M-semicommutative rings obtained as a generalization of strongly semicommutative rings and investigate their properties. We show that if G is a finitely generated Abelian group, then G is torsion free if and only if there exists a ring R with |R| ≥ 2 such that R...
Saved in:
Date: | 2014 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2014
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Strongly semicommutative rings relative to a monoid / M.J. Nikmehr // Український математичний журнал. — 2014. — Т. 66, № 11. — С. 1528–1539. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | For a monoid M, we introduce strongly M-semicommutative rings obtained as a generalization of strongly semicommutative rings and investigate their properties. We show that if G is a finitely generated Abelian group, then G is torsion free if and only if there exists a ring R with |R| ≥ 2 such that R is strongly G-semicommutative. |
---|