Friction and Wear Behavior of Wear-Resistant Belts in Drill Joints for Deep and Ultra-Deep Wells

The friction and wear of an new material for the drill joint were compared with those of traditional wear-resistant belt materials using an SD-1 test rig against a 42Mn2V steel counterface under deep and ultra-deep well conditions. This provides recommendations as to the tribological application of...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Zhang, K., Wang, Z.Q., Wang, D.G.
Format: Article
Language:English
Published: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2018
Series:Проблемы прочности
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Трение и износ износостойких поясов в буровых разрезах для глубоких и сверглубоких скважин / K. Zhang, Z.Q. Wang, D.G. Wang // Проблемы прочности. — 2018. — № 1. — С. 84-90. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:The friction and wear of an new material for the drill joint were compared with those of traditional wear-resistant belt materials using an SD-1 test rig against a 42Mn2V steel counterface under deep and ultra-deep well conditions. This provides recommendations as to the tribological application of the wear-resistant belt. The results obtained strongly indicate that the friction and wear of a polycrystalline diamond (PCD) composite are much lower than those of the traditional wear-resistant belt materials. Among those materials, the friction and wear behavior of a FeNiNb alloy are higher than those of a FeCrMnMo alloy. Of the three wear-resistant belt materials, the bilateral protection performance of a PCD composite is the best one. It is feasible to use this composite as the wear-resistant belt material in the drill joint for deep and ultra-deep wells. The dominant wear mechanism of the wear-resistant belt materials is the microcutting wear, accompanied by the adhesive one. In addition, the wear degree of the PCD composite is the least one.