The generalized De Rham-Hodge theory of Delsarte transmutation operators in multidimension case and its applications
A study of spectral and differential-geometric properties of Delsarte transmutation operators is given. Their differential geometrical and topological structure in multidimension is analyzed, the relationships with the generalized De Rham – Hodge theory of generalized differential complexes are st...
Saved in:
Date: | 2004 |
---|---|
Main Authors: | Prykarpatsky, Y.A., Samoilenko, A.M. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2004
|
Series: | Нелінійні коливання |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | The generalized De Rham-Hodge theory of Delsarte transmutation operators in multidimension case and its applications / Y.A. Prykarpatsky, A.M. Samoilenko // Нелінійні коливання. — 2004. — Т. 7, № 4. — С. 516-537. — Бібліогр.: 25 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
The generalized De Rham-Hodge theory of Delsarte transmutation operators in multidimension case and its applications
by: Prykarpatsky, Y.A., et al.
Published: (2004) -
Theory of multidimensional Delsarte–Lions transmutation operators. II
by: A. M. Samoilenko, et al.
Published: (2019) -
Theory of multidimensional Delsarte – Lions transmutation operators. I
by: A. M. Samoilenko, et al.
Published: (2018) -
Generalized de Rham – Hodge complexes, the related characteristic Chern classes and some applications to integrable multidimensional differential systems on Riemannian manifolds
by: Bogolubov, N.N., et al.
Published: (2007) -
Generalized de Rham – Hodge complexes, the related characteristic Chern classes and some applications to integrable multidimensional differential systems on Riemannian manifolds
by: Bogolubov, N.N., et al.
Published: (2007)