Multimodal method in sloshing

The multimodal method reduces the free-surface sloshing problem to a (modal) system of nonlinear ordinary differential equations. The method was originally proposed for nonimpulsive hydrodynamic loads but, recently, it was successfully extended to the sloshing-induced slamming. In the 50 – 60’s, the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Lukovsky, I.O., Tymokha, O.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Нелінійні коливання
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Multimodal method in sloshing / I.O. Lukovsky, O.M. Tymokha // Нелінійні коливання. — 2015. — Т. 18, № 3. — С. 295-312 — Бібліогр.: 228 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The multimodal method reduces the free-surface sloshing problem to a (modal) system of nonlinear ordinary differential equations. The method was originally proposed for nonimpulsive hydrodynamic loads but, recently, it was successfully extended to the sloshing-induced slamming. In the 50 – 60’s, the method was employed in the Computational Fluid Dynamics (CFD) but has lost the contest the algorithms of the 90-00’s. Nowadays, the method plays the dual role: firstly, as a unique analytical tool for studying nonlinear sloshing regimes, their stability, and chaos as well as for simulations when traditional CFD fails (e.g., containers with a perforated screen) and, secondly, as a source of the modal systems which are analogies of the Kordeweg – de Vries, Boussinesq etc. equations but for the contained liquid. The paper surveys the state-of-the-art and existing modal systems, specifies open problems.