Connectedness of spheres in Cayley graphs

We introduce the notion of connection thickness of spheres in a Cayley graph, related to dead-ends and their retreat depth. It was well-known that connection thickness is bounded for finitely presented one-ended groups. We compute that for natural generating sets of lamplighter groups on a line or o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Brieussel, J., Gournay, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2018
Schriftenreihe:Algebra and Discrete Mathematics
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Connectedness of spheres in Cayley graphs / J. Brieussel, A. Gournay // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 190–246. — Бібліогр.: 40 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We introduce the notion of connection thickness of spheres in a Cayley graph, related to dead-ends and their retreat depth. It was well-known that connection thickness is bounded for finitely presented one-ended groups. We compute that for natural generating sets of lamplighter groups on a line or on a tree, connection thickness is linear or logarithmic respectively. We show that it depends strongly on the generating set. We give an example where the metric induced at the (finite) thickness of connection gives diameter of order n² to the sphere of radius n. We also discuss the rarity of dead-ends and the relationships of connection thickness with cut sets in percolation theory and with almost-convexity. Finally, we present a list of open questions about spheres in Cayley graphs.