Classification of homogeneous Fourier matrices
Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual C-algebras that s...
Gespeichert in:
Datum: | 2019 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2019
|
Schriftenreihe: | Algebra and Discrete Mathematics |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Classification of homogeneous Fourier matrices / G. Singh // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 1. — С. 75–84. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group SL₂(Z). In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual C-algebras that satisfy a certain condition. We prove that a homogenous C-algebra arising from a Fourier matrix has all the degrees equal to 1. |
---|