On the Dirichlet problem for A-harmonic functions

We study the Dirichlet boundary value problem with continuous boundary data for the A-harmonic equations div[A grad u] = 0 in an arbitrary bounded domain D of the complex plane С with no boundary component degenerated to a single point. We provide integral criteria, including the BMO and FMO criteri...

Full description

Saved in:
Bibliographic Details
Date:2019
Main Authors: Gutlyanskiĭ, V.Ya., Ryazanov, V.I., Sevost’yanov, E.A., Yakubov, E.
Format: Article
Language:English
Published: Видавничий дім "Академперіодика" НАН України 2019
Series:Вісник НАН України
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the Dirichlet problem for A-harmonic functions / V.Ya. Gutlyanskiĭ, V.I. Ryazanov, E.A. Sevost’yanov, E.Yakubov // Доповіді Національної академії наук України. — 2023. — № 4. — С. 11-19. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We study the Dirichlet boundary value problem with continuous boundary data for the A-harmonic equations div[A grad u] = 0 in an arbitrary bounded domain D of the complex plane С with no boundary component degenerated to a single point. We provide integral criteria, including the BMO and FMO criteria expressed in terms of A (z), for the existence of weak solutions to the problem. We also discuss the connections between A-harmonic functions and potential theory.