Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension
The paper is devoted to the study of connections between fractal properties of one-dimensional singularly continuous probability measures and the preservation of the Hausdorf dimension of any subset of the unit interval under the corresponding distribution function. Conditions for the distribution f...
Gespeichert in:
Datum: | 2007 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2007
|
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension/ G. Torbin // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 281-293. — Бібліогр.: 12 назв.— англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
oai:nasplib.isofts.kiev.ua:123456789-4497 |
---|---|
record_format |
dspace |
spelling |
oai:nasplib.isofts.kiev.ua:123456789-44972025-02-23T17:40:53Z Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension Torbin, G. The paper is devoted to the study of connections between fractal properties of one-dimensional singularly continuous probability measures and the preservation of the Hausdorf dimension of any subset of the unit interval under the corresponding distribution function. Conditions for the distribution function of a random variable with independent Q-digits to be a transformation preserving the Hausdorf dimension (DP-transformation) are studied in details. It is shown that for a large class of probability measures the distribution function is a DP-transformation if and only if the corresponding probability measure is of full Hausdorf dimension. 2007 Article Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension/ G. Torbin // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 281-293. — Бібліогр.: 12 назв.— англ. 0321-3900 https://nasplib.isofts.kiev.ua/handle/123456789/4497 en application/pdf Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The paper is devoted to the study of connections between fractal properties of one-dimensional singularly continuous probability measures and the preservation of the Hausdorf dimension of any subset of the unit interval under the corresponding distribution function. Conditions for the distribution function of a random variable with independent Q-digits to be a transformation preserving the Hausdorf dimension (DP-transformation) are studied in details. It is shown that for a large class of probability measures the distribution function is a DP-transformation if and only if the corresponding probability measure is of full Hausdorf dimension. |
format |
Article |
author |
Torbin, G. |
spellingShingle |
Torbin, G. Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension |
author_facet |
Torbin, G. |
author_sort |
Torbin, G. |
title |
Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension |
title_short |
Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension |
title_full |
Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension |
title_fullStr |
Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension |
title_full_unstemmed |
Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension |
title_sort |
probability distributions with independent q-symbols and transformations preserving the hausdorff dimension |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
citation_txt |
Probability distributions with independent Q-symbols and transformations preserving the Hausdorff dimension/ G. Torbin // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 281-293. — Бібліогр.: 12 назв.— англ. |
work_keys_str_mv |
AT torbing probabilitydistributionswithindependentqsymbolsandtransformationspreservingthehausdorffdimension |
first_indexed |
2025-07-22T04:26:02Z |
last_indexed |
2025-07-22T04:26:02Z |
_version_ |
1838319783538327552 |