On the subset combinatorics of \(G\)-spaces

Let \(G\) be a group and let \(X\) be a transitive \(G\)-space. We classify the subsets of \(X\) with respect to a translation invariant ideal \({J}\) in the Boolean algebra of all subsets of \(X\), introduce and apply the relative combinatorical derivations of subsets of \(X\). Using the standard a...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Protasov, Igor, Slobodianiuk, Sergii
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1026
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1026
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-10262018-04-26T01:41:11Z On the subset combinatorics of \(G\)-spaces Protasov, Igor Slobodianiuk, Sergii \(G\)-space, relative combinatorial derivation, Stone-\(\check{C}\)ech compactification, ultracompanion, sparse and scattered subsets 20F69, 22A15, 54D35 Let \(G\) be a group and let \(X\) be a transitive \(G\)-space. We classify the subsets of \(X\) with respect to a translation invariant ideal \({J}\) in the Boolean algebra of all subsets of \(X\), introduce and apply the relative combinatorical derivations of subsets of \(X\). Using the standard action of \(G\) on the Stone-\(\check{C}\)ech compactification \(\beta X\) of the discrete space \(X\), we characterize the points \(p\in\beta X\) isolated in \(Gp\) and describe a size of a subset of \(X\) in terms of its ultracompanions in \(\beta X\). We introduce and characterize scattered and sparse subsets of \(X\) from different points of view. Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1026 Algebra and Discrete Mathematics; Vol 17, No 1 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1026/550 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-26T01:41:11Z
collection OJS
language English
topic \(G\)-space
relative combinatorial derivation
Stone-\(\check{C}\)ech compactification
ultracompanion
sparse and scattered subsets
20F69
22A15
54D35
spellingShingle \(G\)-space
relative combinatorial derivation
Stone-\(\check{C}\)ech compactification
ultracompanion
sparse and scattered subsets
20F69
22A15
54D35
Protasov, Igor
Slobodianiuk, Sergii
On the subset combinatorics of \(G\)-spaces
topic_facet \(G\)-space
relative combinatorial derivation
Stone-\(\check{C}\)ech compactification
ultracompanion
sparse and scattered subsets
20F69
22A15
54D35
format Article
author Protasov, Igor
Slobodianiuk, Sergii
author_facet Protasov, Igor
Slobodianiuk, Sergii
author_sort Protasov, Igor
title On the subset combinatorics of \(G\)-spaces
title_short On the subset combinatorics of \(G\)-spaces
title_full On the subset combinatorics of \(G\)-spaces
title_fullStr On the subset combinatorics of \(G\)-spaces
title_full_unstemmed On the subset combinatorics of \(G\)-spaces
title_sort on the subset combinatorics of \(g\)-spaces
description Let \(G\) be a group and let \(X\) be a transitive \(G\)-space. We classify the subsets of \(X\) with respect to a translation invariant ideal \({J}\) in the Boolean algebra of all subsets of \(X\), introduce and apply the relative combinatorical derivations of subsets of \(X\). Using the standard action of \(G\) on the Stone-\(\check{C}\)ech compactification \(\beta X\) of the discrete space \(X\), we characterize the points \(p\in\beta X\) isolated in \(Gp\) and describe a size of a subset of \(X\) in terms of its ultracompanions in \(\beta X\). We introduce and characterize scattered and sparse subsets of \(X\) from different points of view.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1026
work_keys_str_mv AT protasovigor onthesubsetcombinatoricsofgspaces
AT slobodianiuksergii onthesubsetcombinatoricsofgspaces
first_indexed 2025-07-17T10:33:12Z
last_indexed 2025-07-17T10:33:12Z
_version_ 1837889898661543936