Symmetries of automata

For a given reachable automaton \(\mathcal A\), we prove that the (state-) endomorphism monoid \(End({\mathcal A})\) divides its characteristic monoid \(M({\mathcal A})\). Hence so does its (state-)automorphism group \(Aut({\mathcal A})\), and, for finite \(\mathcal A\), \(Aut(\mathcal A)\) is a hom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Egri-Nagy, Attila, Nehaniv, Chrystopher L.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1175
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1175
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-11752018-05-17T07:50:53Z Symmetries of automata Egri-Nagy, Attila Nehaniv, Chrystopher L. 20B25, 20E22, 20M20, 20M35, 68Q70 For a given reachable automaton \(\mathcal A\), we prove that the (state-) endomorphism monoid \(End({\mathcal A})\) divides its characteristic monoid \(M({\mathcal A})\). Hence so does its (state-)automorphism group \(Aut({\mathcal A})\), and, for finite \(\mathcal A\), \(Aut(\mathcal A)\) is a homomorphic image of a subgroup of the characteristic monoid. It follows that in the presence of a (state-) automorphism group \(G\) of \(\mathcal A\), a finite automaton \(\mathcal A\) (and its transformation monoid) always has a decomposition as a divisor of the wreath product of two transformation semigroups whose semigroups are divisors of \(M(\mathcal A)\), namely the symmetry group \(G\) and the quotient of \(M(\mathcal A)\) induced by the action of \(G\). Moreover, this division is an embedding if \(M(\mathcal A)\) is transitive on states of \(\mathcal A\). For more general automorphisms, which may be non-trivial on input letters, counterexamples show that they need not be induced by any corresponding characteristic monoid element. Lugansk National Taras Shevchenko University 2018-05-17 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1175 Algebra and Discrete Mathematics; Vol 19, No 1 (2015) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1175/664 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-05-17T07:50:53Z
collection OJS
language English
topic
20B25
20E22
20M20
20M35
68Q70
spellingShingle
20B25
20E22
20M20
20M35
68Q70
Egri-Nagy, Attila
Nehaniv, Chrystopher L.
Symmetries of automata
topic_facet
20B25
20E22
20M20
20M35
68Q70
format Article
author Egri-Nagy, Attila
Nehaniv, Chrystopher L.
author_facet Egri-Nagy, Attila
Nehaniv, Chrystopher L.
author_sort Egri-Nagy, Attila
title Symmetries of automata
title_short Symmetries of automata
title_full Symmetries of automata
title_fullStr Symmetries of automata
title_full_unstemmed Symmetries of automata
title_sort symmetries of automata
description For a given reachable automaton \(\mathcal A\), we prove that the (state-) endomorphism monoid \(End({\mathcal A})\) divides its characteristic monoid \(M({\mathcal A})\). Hence so does its (state-)automorphism group \(Aut({\mathcal A})\), and, for finite \(\mathcal A\), \(Aut(\mathcal A)\) is a homomorphic image of a subgroup of the characteristic monoid. It follows that in the presence of a (state-) automorphism group \(G\) of \(\mathcal A\), a finite automaton \(\mathcal A\) (and its transformation monoid) always has a decomposition as a divisor of the wreath product of two transformation semigroups whose semigroups are divisors of \(M(\mathcal A)\), namely the symmetry group \(G\) and the quotient of \(M(\mathcal A)\) induced by the action of \(G\). Moreover, this division is an embedding if \(M(\mathcal A)\) is transitive on states of \(\mathcal A\). For more general automorphisms, which may be non-trivial on input letters, counterexamples show that they need not be induced by any corresponding characteristic monoid element.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1175
work_keys_str_mv AT egrinagyattila symmetriesofautomata
AT nehanivchrystopherl symmetriesofautomata
first_indexed 2025-07-17T10:30:54Z
last_indexed 2025-07-17T10:30:54Z
_version_ 1837890131290226688