Automorphism groups of superextensions of finite monogenic semigroups

A family \(\mathcal L\) of subsets  of a set \(X\) is called linked if \(A\cap B\ne\emptyset\) for any \(A,B\in\mathcal L\).  A linked family \(\mathcal M\) of subsets of \(X\) is maximal linked if \(\mathcal M\) coincides with each linked family \(\mathcal L\) on \(X\) that contains \(\mathcal M\)....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Banakh, Taras O., Gavrylkiv, Volodymyr M.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2019
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1225
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:A family \(\mathcal L\) of subsets  of a set \(X\) is called linked if \(A\cap B\ne\emptyset\) for any \(A,B\in\mathcal L\).  A linked family \(\mathcal M\) of subsets of \(X\) is maximal linked if \(\mathcal M\) coincides with each linked family \(\mathcal L\) on \(X\) that contains \(\mathcal M\). The superextension \(\lambda(X)\) of \(X\) consists of all maximal linked families on \(X\). Any associative binary operation \(* : X\times X \to X\) can be extended to an associative binary operation \(*: \lambda(X)\times\lambda(X)\to\lambda(X)\). In the paper we study automorphisms of the superextensions of  finite monogenic semigroups and characteristic ideals in such semigroups. In particular, we describe the automorphism groups of the superextensions of finite monogenic semigroups of cardinality \(\leq 5\).