On solvable \(Z_3\)-graded alternative algebras
Let \(A=A_0\oplus A_1\oplus A_2\) be an alternative \(Z_3\)-gradedalgebra. The main result of the paper is the following: if \(A_0\) issolvable and the characteristic of the ground field not equal 2,3and 5, then \(A\) is solvable.
Збережено в:
Дата: | 2016 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2016
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/144 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-144 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-1442016-01-12T07:40:37Z On solvable \(Z_3\)-graded alternative algebras Goncharov, Maxim alternative algebra, solvable algebra, $Z_3$-graded Let \(A=A_0\oplus A_1\oplus A_2\) be an alternative \(Z_3\)-gradedalgebra. The main result of the paper is the following: if \(A_0\) issolvable and the characteristic of the ground field not equal 2,3and 5, then \(A\) is solvable. Lugansk National Taras Shevchenko University 2016-01-12 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/144 Algebra and Discrete Mathematics; Vol 20, No 2 (2015) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/144/42 Copyright (c) 2016 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
baseUrl_str |
|
datestamp_date |
2016-01-12T07:40:37Z |
collection |
OJS |
language |
English |
topic |
alternative algebra solvable algebra $Z_3$-graded |
spellingShingle |
alternative algebra solvable algebra $Z_3$-graded Goncharov, Maxim On solvable \(Z_3\)-graded alternative algebras |
topic_facet |
alternative algebra solvable algebra $Z_3$-graded |
format |
Article |
author |
Goncharov, Maxim |
author_facet |
Goncharov, Maxim |
author_sort |
Goncharov, Maxim |
title |
On solvable \(Z_3\)-graded alternative algebras |
title_short |
On solvable \(Z_3\)-graded alternative algebras |
title_full |
On solvable \(Z_3\)-graded alternative algebras |
title_fullStr |
On solvable \(Z_3\)-graded alternative algebras |
title_full_unstemmed |
On solvable \(Z_3\)-graded alternative algebras |
title_sort |
on solvable \(z_3\)-graded alternative algebras |
description |
Let \(A=A_0\oplus A_1\oplus A_2\) be an alternative \(Z_3\)-gradedalgebra. The main result of the paper is the following: if \(A_0\) issolvable and the characteristic of the ground field not equal 2,3and 5, then \(A\) is solvable. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2016 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/144 |
work_keys_str_mv |
AT goncharovmaxim onsolvablez3gradedalternativealgebras |
first_indexed |
2025-07-17T10:34:17Z |
last_indexed |
2025-07-17T10:34:17Z |
_version_ |
1837889966358659072 |