On the orbits of automaton semigroups and groups

We investigate the orbits of automaton semigroups and groups to obtain algorithmic and structural results, both for general automata but also for some special subclasses.First, we show that a more general version of the finiteness problem for automaton groups is undecidable. This problem is equivale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2022
Hauptverfasser: D'Angeli, D., Francoeur, D., Rodaro, E., Wächter, J. Ph.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2022
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1692
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:We investigate the orbits of automaton semigroups and groups to obtain algorithmic and structural results, both for general automata but also for some special subclasses.First, we show that a more general version of the finiteness problem for automaton groups is undecidable. This problem is equivalent to the finiteness problem for left principal ideals in automaton semigroups generated by complete and reversible automata.Then, we look at \(\omega\)-word (i.\,e.\ right infinite words) with a finite orbit. We show that every automaton yielding an \(\omega\)-word with a finite orbit already yields an ultimately periodic one, which is not periodic in general, however. On the algorithmic side, we observe that it is not possible to decide whether a given periodic \(\omega\)-word has an infinite orbit and that we cannot check whether a given reversible and complete automaton admits an \(\omega\)-word with a finite orbit, a reciprocal problem to the finiteness problem for automaton semigroups in the reversible case.Finally, we look at automaton groups generated by reversible but not bi-reversible automata and show that many words have infinite orbits under the action of such automata.