Note on cyclic doppelsemigroups
A~doppelsemigroup \((G,\dashv,\vdash)\) is called cyclic if \((G,\dashv)\) is a~cyclic group. In the paper, we describe up to isomorphism all cyclic (strong) doppelsemigroups. We prove that up to isomorphism there exist \(\tau(n)\) finite cyclic (strong) doppelsemigroups of order \(n\), where \(\tau...
Gespeichert in:
Datum: | 2023 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2023
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1991 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsZusammenfassung: | A~doppelsemigroup \((G,\dashv,\vdash)\) is called cyclic if \((G,\dashv)\) is a~cyclic group. In the paper, we describe up to isomorphism all cyclic (strong) doppelsemigroups. We prove that up to isomorphism there exist \(\tau(n)\) finite cyclic (strong) doppelsemigroups of order \(n\), where \(\tau\) is the number of divisors function. Also there exist infinite countably many pairwise non-isomorphic infinite cyclic (strong) doppelsemigroups. |
---|