Note on cyclic doppelsemigroups

A~doppelsemigroup \((G,\dashv,\vdash)\) is called cyclic if \((G,\dashv)\) is a~cyclic group. In the paper, we describe up to isomorphism all cyclic (strong) doppelsemigroups. We prove that up to isomorphism there exist \(\tau(n)\) finite cyclic (strong) doppelsemigroups of order \(n\), where \(\tau...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2023
1. Verfasser: Gavrylkiv, V.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2023
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1991
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:A~doppelsemigroup \((G,\dashv,\vdash)\) is called cyclic if \((G,\dashv)\) is a~cyclic group. In the paper, we describe up to isomorphism all cyclic (strong) doppelsemigroups. We prove that up to isomorphism there exist \(\tau(n)\) finite cyclic (strong) doppelsemigroups of order \(n\), where \(\tau\) is the number of divisors function. Also there exist infinite countably many pairwise non-isomorphic infinite cyclic (strong) doppelsemigroups.