Transformations of \((0,1]\) preserving tails of \(\Delta^{\mu}\)-representation of numbers

Let \(\mu\in (0,1)\) be a given parameter, \(\nu\equiv 1-\mu\). We consider \(\Delta^{\mu}\)-representation of numbers \(x=\Delta^{\mu}_{a_1a_2\ldots a_n\ldots}\) belonging to \((0,1]\) based on their expansion in alternating series or finite sum in the form:\[x=\sum_n(B_{n}-{B'_n})\equiv \Delt...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Isaieva, Tetiana M., Pratsiovytyi, Mykola V.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2016
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/202
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Let \(\mu\in (0,1)\) be a given parameter, \(\nu\equiv 1-\mu\). We consider \(\Delta^{\mu}\)-representation of numbers \(x=\Delta^{\mu}_{a_1a_2\ldots a_n\ldots}\) belonging to \((0,1]\) based on their expansion in alternating series or finite sum in the form:\[x=\sum_n(B_{n}-{B'_n})\equiv \Delta^{\mu}_{a_1a_2\ldots a_n\ldots},\]where\(B_n=\nu^{a_1+a_3+\ldots+a_{2n-1}-1}{\mu}^{a_2+a_4+\ldots+a_{2n-2}},\)\({B^{\prime}_n}=\nu^{a_1+a_3+\ldots+a_{2n-1}-1}{\mu}^{a_2+a_4+\ldots+a_{2n}},\) \(a_i\!\in\! \mathbb{N}\).This representation has an infinite alphabet \(\{1,2,\ldots\}\), zero redundancy and \(N\)-self-similar geometry.In the paper, classes of continuous strictly increasing functions preserving ``tails'' of \(\Delta^{\mu}\)-representation of numbers are constructed. Using these functions we construct also continuous transformations of \((0,1]\). We prove that the set of all such transformations is infinite and forms non-commutative group together with an composition operation.