On the algebra of derivations of some low-dimensional Leibniz algebras

Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([,]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study the algebras of derivations of nilpotent Leibniz algebras...

Full description

Saved in:
Bibliographic Details
Date:2023
Main Authors: Kurdachenko, L. A., Semko, M. M., Subbotin, I. Ya.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2023
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2161
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-2161
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-21612023-12-11T16:21:07Z On the algebra of derivations of some low-dimensional Leibniz algebras Kurdachenko, L. A. Semko, M. M. Subbotin, I. Ya. Leibniz algebra, nilpotent Leibniz algebra, dimension, derivation 17A32; 17A60; 17A99 Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([,]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study the algebras of derivations of nilpotent Leibniz algebras of low dimensions. Lugansk National Taras Shevchenko University The first author is grateful to Isaac Newton Institute for Mathematical Sciences and to the University of Edinburgh for the support provided in the frame of LMS Solidarity Supplementary Grant Program. 2023-12-11 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2161 10.12958/adm2161 Algebra and Discrete Mathematics; Vol 36, No 1 (2023) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2161/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2161/1122 Copyright (c) 2023 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2023-12-11T16:21:07Z
collection OJS
language English
topic Leibniz algebra
nilpotent Leibniz algebra
dimension
derivation
17A32
17A60
17A99
spellingShingle Leibniz algebra
nilpotent Leibniz algebra
dimension
derivation
17A32
17A60
17A99
Kurdachenko, L. A.
Semko, M. M.
Subbotin, I. Ya.
On the algebra of derivations of some low-dimensional Leibniz algebras
topic_facet Leibniz algebra
nilpotent Leibniz algebra
dimension
derivation
17A32
17A60
17A99
format Article
author Kurdachenko, L. A.
Semko, M. M.
Subbotin, I. Ya.
author_facet Kurdachenko, L. A.
Semko, M. M.
Subbotin, I. Ya.
author_sort Kurdachenko, L. A.
title On the algebra of derivations of some low-dimensional Leibniz algebras
title_short On the algebra of derivations of some low-dimensional Leibniz algebras
title_full On the algebra of derivations of some low-dimensional Leibniz algebras
title_fullStr On the algebra of derivations of some low-dimensional Leibniz algebras
title_full_unstemmed On the algebra of derivations of some low-dimensional Leibniz algebras
title_sort on the algebra of derivations of some low-dimensional leibniz algebras
description Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([,]\). Then \(L\) is called a left Leibniz algebra if it satisfies the left Leibniz identity \([[a,b],c]=[a,[b,c]]-[b,[a,c]]\) for all \(a,b,c\in L\). We study the algebras of derivations of nilpotent Leibniz algebras of low dimensions.
publisher Lugansk National Taras Shevchenko University
publishDate 2023
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2161
work_keys_str_mv AT kurdachenkola onthealgebraofderivationsofsomelowdimensionalleibnizalgebras
AT semkomm onthealgebraofderivationsofsomelowdimensionalleibnizalgebras
AT subbotiniya onthealgebraofderivationsofsomelowdimensionalleibnizalgebras
first_indexed 2025-07-17T10:35:20Z
last_indexed 2025-07-17T10:35:20Z
_version_ 1837890033194893313