Low-dimensional nilpotent Leibniz algebras and their automorphism groups
Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([,]\). Then \(L\) is called a Leibniz algebra if it satisfies the Leibniz identity: \([a,[b,c]]=[[a,b],c]+[b,[a,c]]\) for all \(a,b,c\in L\). A linear transformation \(f\) of \(L\) is called an endomorphism of \(L\), i...
Saved in:
Date: | 2024 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2024
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2264 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-2264 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-22642024-06-27T08:42:43Z Low-dimensional nilpotent Leibniz algebras and their automorphism groups Minaiev, Pavlo Ye. Pypka, Oleksandr O. Semko, Larysa P. Leibniz algebra, automorphism group 17A32, 17A36 Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([,]\). Then \(L\) is called a Leibniz algebra if it satisfies the Leibniz identity: \([a,[b,c]]=[[a,b],c]+[b,[a,c]]\) for all \(a,b,c\in L\). A linear transformation \(f\) of \(L\) is called an endomorphism of \(L\), if \(f([a,b])=[f(a),f(b)]\) for all \(a,b\in L\). A bijective endomorphism of \(L\) is called an automorphism of \(L\). The set of all automorphisms of Leibniz algebra is a group with respect to the operation of multiplication of automorphisms. The main goal of this article is to describe the structure of the automorphism group of a certain type of nilpotent three-dimensional Leibniz algebras over arbitrary field \(F\). Lugansk National Taras Shevchenko University 2024-06-27 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2264 10.12958/adm2264 Algebra and Discrete Mathematics; Vol 37, No 2 (2024) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2264/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2264/1184 Copyright (c) 2024 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
baseUrl_str |
|
datestamp_date |
2024-06-27T08:42:43Z |
collection |
OJS |
language |
English |
topic |
Leibniz algebra automorphism group 17A32 17A36 |
spellingShingle |
Leibniz algebra automorphism group 17A32 17A36 Minaiev, Pavlo Ye. Pypka, Oleksandr O. Semko, Larysa P. Low-dimensional nilpotent Leibniz algebras and their automorphism groups |
topic_facet |
Leibniz algebra automorphism group 17A32 17A36 |
format |
Article |
author |
Minaiev, Pavlo Ye. Pypka, Oleksandr O. Semko, Larysa P. |
author_facet |
Minaiev, Pavlo Ye. Pypka, Oleksandr O. Semko, Larysa P. |
author_sort |
Minaiev, Pavlo Ye. |
title |
Low-dimensional nilpotent Leibniz algebras and their automorphism groups |
title_short |
Low-dimensional nilpotent Leibniz algebras and their automorphism groups |
title_full |
Low-dimensional nilpotent Leibniz algebras and their automorphism groups |
title_fullStr |
Low-dimensional nilpotent Leibniz algebras and their automorphism groups |
title_full_unstemmed |
Low-dimensional nilpotent Leibniz algebras and their automorphism groups |
title_sort |
low-dimensional nilpotent leibniz algebras and their automorphism groups |
description |
Let \(L\) be an algebra over a field \(F\) with the binary operations \(+\) and \([,]\). Then \(L\) is called a Leibniz algebra if it satisfies the Leibniz identity: \([a,[b,c]]=[[a,b],c]+[b,[a,c]]\) for all \(a,b,c\in L\). A linear transformation \(f\) of \(L\) is called an endomorphism of \(L\), if \(f([a,b])=[f(a),f(b)]\) for all \(a,b\in L\). A bijective endomorphism of \(L\) is called an automorphism of \(L\). The set of all automorphisms of Leibniz algebra is a group with respect to the operation of multiplication of automorphisms. The main goal of this article is to describe the structure of the automorphism group of a certain type of nilpotent three-dimensional Leibniz algebras over arbitrary field \(F\). |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2024 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2264 |
work_keys_str_mv |
AT minaievpavloye lowdimensionalnilpotentleibnizalgebrasandtheirautomorphismgroups AT pypkaoleksandro lowdimensionalnilpotentleibnizalgebrasandtheirautomorphismgroups AT semkolarysap lowdimensionalnilpotentleibnizalgebrasandtheirautomorphismgroups |
first_indexed |
2025-07-17T10:35:22Z |
last_indexed |
2025-07-17T10:35:22Z |
_version_ |
1837890035745030144 |