On a variation of \(\oplus\)-supplemented modules

Let \(R\) be a ring and \(M\) be an \(R\)-module. \(M\) is called \(\oplus_{ss}\)-supplemented if every submodule of \(M\) has a \(ss\)-supplement that is a direct summand of \(M\). In this paper, the basic properties and characterizations of \(\oplus_{ss}\)-supplemented modules are provided. In par...

Full description

Saved in:
Bibliographic Details
Date:2024
Main Author: Kaynar, Engin
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2024
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2273
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-2273
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-22732024-09-23T09:29:11Z On a variation of \(\oplus\)-supplemented modules Kaynar, Engin \(ss\)-supplement submodule, \(\oplus_{ss}\)-supplemented module 16D10, 16D60, 16D99 Let \(R\) be a ring and \(M\) be an \(R\)-module. \(M\) is called \(\oplus_{ss}\)-supplemented if every submodule of \(M\) has a \(ss\)-supplement that is a direct summand of \(M\). In this paper, the basic properties and characterizations of \(\oplus_{ss}\)-supplemented modules are provided. In particular, it is shown that \((1)\) if a module \(M\) is \(\oplus_{ss}\)-supplemented, then \(Rad(M)\) is semisimple and \(Soc(M)\unlhd M\); \((2)\) every direct sum of \(ss\)-lifting modules is \(\oplus_{ss}\)-supplemented; \((3)\) a commutative ring \(R\) is an artinian serial ring with semisimple radical if and only if every left \(R\)-module is \(\oplus_{ss}\)-supplemented. Lugansk National Taras Shevchenko University 2024-09-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2273 10.12958/adm2273 Algebra and Discrete Mathematics; Vol 38, No 1 (2024) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2273/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2273/1192 Copyright (c) 2024 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2024-09-23T09:29:11Z
collection OJS
language English
topic \(ss\)-supplement submodule
\(\oplus_{ss}\)-supplemented module
16D10
16D60
16D99
spellingShingle \(ss\)-supplement submodule
\(\oplus_{ss}\)-supplemented module
16D10
16D60
16D99
Kaynar, Engin
On a variation of \(\oplus\)-supplemented modules
topic_facet \(ss\)-supplement submodule
\(\oplus_{ss}\)-supplemented module
16D10
16D60
16D99
format Article
author Kaynar, Engin
author_facet Kaynar, Engin
author_sort Kaynar, Engin
title On a variation of \(\oplus\)-supplemented modules
title_short On a variation of \(\oplus\)-supplemented modules
title_full On a variation of \(\oplus\)-supplemented modules
title_fullStr On a variation of \(\oplus\)-supplemented modules
title_full_unstemmed On a variation of \(\oplus\)-supplemented modules
title_sort on a variation of \(\oplus\)-supplemented modules
description Let \(R\) be a ring and \(M\) be an \(R\)-module. \(M\) is called \(\oplus_{ss}\)-supplemented if every submodule of \(M\) has a \(ss\)-supplement that is a direct summand of \(M\). In this paper, the basic properties and characterizations of \(\oplus_{ss}\)-supplemented modules are provided. In particular, it is shown that \((1)\) if a module \(M\) is \(\oplus_{ss}\)-supplemented, then \(Rad(M)\) is semisimple and \(Soc(M)\unlhd M\); \((2)\) every direct sum of \(ss\)-lifting modules is \(\oplus_{ss}\)-supplemented; \((3)\) a commutative ring \(R\) is an artinian serial ring with semisimple radical if and only if every left \(R\)-module is \(\oplus_{ss}\)-supplemented.
publisher Lugansk National Taras Shevchenko University
publishDate 2024
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2273
work_keys_str_mv AT kaynarengin onavariationofoplussupplementedmodules
first_indexed 2024-09-24T04:03:45Z
last_indexed 2024-09-24T04:03:45Z
_version_ 1820651918636089344