On a variation of \(\oplus\)-supplemented modules
Let \(R\) be a ring and \(M\) be an \(R\)-module. \(M\) is called \(\oplus_{ss}\)-supplemented if every submodule of \(M\) has a \(ss\)-supplement that is a direct summand of \(M\). In this paper, the basic properties and characterizations of \(\oplus_{ss}\)-supplemented modules are provided. In par...
Saved in:
Date: | 2024 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2024
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2273 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-2273 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-22732024-09-23T09:29:11Z On a variation of \(\oplus\)-supplemented modules Kaynar, Engin \(ss\)-supplement submodule, \(\oplus_{ss}\)-supplemented module 16D10, 16D60, 16D99 Let \(R\) be a ring and \(M\) be an \(R\)-module. \(M\) is called \(\oplus_{ss}\)-supplemented if every submodule of \(M\) has a \(ss\)-supplement that is a direct summand of \(M\). In this paper, the basic properties and characterizations of \(\oplus_{ss}\)-supplemented modules are provided. In particular, it is shown that \((1)\) if a module \(M\) is \(\oplus_{ss}\)-supplemented, then \(Rad(M)\) is semisimple and \(Soc(M)\unlhd M\); \((2)\) every direct sum of \(ss\)-lifting modules is \(\oplus_{ss}\)-supplemented; \((3)\) a commutative ring \(R\) is an artinian serial ring with semisimple radical if and only if every left \(R\)-module is \(\oplus_{ss}\)-supplemented. Lugansk National Taras Shevchenko University 2024-09-23 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2273 10.12958/adm2273 Algebra and Discrete Mathematics; Vol 38, No 1 (2024) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2273/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2273/1192 Copyright (c) 2024 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
baseUrl_str |
|
datestamp_date |
2024-09-23T09:29:11Z |
collection |
OJS |
language |
English |
topic |
\(ss\)-supplement submodule \(\oplus_{ss}\)-supplemented module 16D10 16D60 16D99 |
spellingShingle |
\(ss\)-supplement submodule \(\oplus_{ss}\)-supplemented module 16D10 16D60 16D99 Kaynar, Engin On a variation of \(\oplus\)-supplemented modules |
topic_facet |
\(ss\)-supplement submodule \(\oplus_{ss}\)-supplemented module 16D10 16D60 16D99 |
format |
Article |
author |
Kaynar, Engin |
author_facet |
Kaynar, Engin |
author_sort |
Kaynar, Engin |
title |
On a variation of \(\oplus\)-supplemented modules |
title_short |
On a variation of \(\oplus\)-supplemented modules |
title_full |
On a variation of \(\oplus\)-supplemented modules |
title_fullStr |
On a variation of \(\oplus\)-supplemented modules |
title_full_unstemmed |
On a variation of \(\oplus\)-supplemented modules |
title_sort |
on a variation of \(\oplus\)-supplemented modules |
description |
Let \(R\) be a ring and \(M\) be an \(R\)-module. \(M\) is called \(\oplus_{ss}\)-supplemented if every submodule of \(M\) has a \(ss\)-supplement that is a direct summand of \(M\). In this paper, the basic properties and characterizations of \(\oplus_{ss}\)-supplemented modules are provided. In particular, it is shown that \((1)\) if a module \(M\) is \(\oplus_{ss}\)-supplemented, then \(Rad(M)\) is semisimple and \(Soc(M)\unlhd M\); \((2)\) every direct sum of \(ss\)-lifting modules is \(\oplus_{ss}\)-supplemented; \((3)\) a commutative ring \(R\) is an artinian serial ring with semisimple radical if and only if every left \(R\)-module is \(\oplus_{ss}\)-supplemented. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2024 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2273 |
work_keys_str_mv |
AT kaynarengin onavariationofoplussupplementedmodules |
first_indexed |
2024-09-24T04:03:45Z |
last_indexed |
2024-09-24T04:03:45Z |
_version_ |
1820651918636089344 |