Existence of Dynkin scanning trees for non-serial posets with positive Tits quadratic form
Let \(G\) be a finite undirected connected graph. The minimum number of edges that must be removed to make the graph acyclic is called the circuit rank of \(G\). If such edges are fixed, the graph that remains is called a spanning tree of \(G\). In this paper we study scanning trees of the Hasse dia...
Збережено в:
Дата: | 2025 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2025
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2368 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-2368 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-23682025-01-19T19:44:59Z Existence of Dynkin scanning trees for non-serial posets with positive Tits quadratic form Bondarenko, Vitaliy M. Styopochkina, Maryna V. Tits quadratic form, non-serial positive poset, Hasse diagram, circuit rank, scanning tree, Dynkin diagram Let \(G\) be a finite undirected connected graph. The minimum number of edges that must be removed to make the graph acyclic is called the circuit rank of \(G\). If such edges are fixed, the graph that remains is called a spanning tree of \(G\). In this paper we study scanning trees of the Hasse diagrams of connected posets with positive Tits quadratic form. Lugansk National Taras Shevchenko University 2025-01-19 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2368 10.12958/adm2368 Algebra and Discrete Mathematics; Vol 38, No 2 (2024): A special issue 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2368/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/2368/1278 Copyright (c) 2025 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
baseUrl_str |
|
datestamp_date |
2025-01-19T19:44:59Z |
collection |
OJS |
language |
English |
topic |
Tits quadratic form non-serial positive poset Hasse diagram circuit rank scanning tree Dynkin diagram |
spellingShingle |
Tits quadratic form non-serial positive poset Hasse diagram circuit rank scanning tree Dynkin diagram Bondarenko, Vitaliy M. Styopochkina, Maryna V. Existence of Dynkin scanning trees for non-serial posets with positive Tits quadratic form |
topic_facet |
Tits quadratic form non-serial positive poset Hasse diagram circuit rank scanning tree Dynkin diagram |
format |
Article |
author |
Bondarenko, Vitaliy M. Styopochkina, Maryna V. |
author_facet |
Bondarenko, Vitaliy M. Styopochkina, Maryna V. |
author_sort |
Bondarenko, Vitaliy M. |
title |
Existence of Dynkin scanning trees for non-serial posets with positive Tits quadratic form |
title_short |
Existence of Dynkin scanning trees for non-serial posets with positive Tits quadratic form |
title_full |
Existence of Dynkin scanning trees for non-serial posets with positive Tits quadratic form |
title_fullStr |
Existence of Dynkin scanning trees for non-serial posets with positive Tits quadratic form |
title_full_unstemmed |
Existence of Dynkin scanning trees for non-serial posets with positive Tits quadratic form |
title_sort |
existence of dynkin scanning trees for non-serial posets with positive tits quadratic form |
description |
Let \(G\) be a finite undirected connected graph. The minimum number of edges that must be removed to make the graph acyclic is called the circuit rank of \(G\). If such edges are fixed, the graph that remains is called a spanning tree of \(G\). In this paper we study scanning trees of the Hasse diagrams of connected posets with positive Tits quadratic form. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2025 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2368 |
work_keys_str_mv |
AT bondarenkovitaliym existenceofdynkinscanningtreesfornonserialposetswithpositivetitsquadraticform AT styopochkinamarynav existenceofdynkinscanningtreesfornonserialposetswithpositivetitsquadraticform |
first_indexed |
2025-07-17T10:32:34Z |
last_indexed |
2025-07-17T10:32:34Z |
_version_ |
1837889859022225408 |