Computing bounds for the general sum-connectivity index of some graph operations

Let \(G\) be a graph with vertex set \(V(G)\) and edge set \(E(G)\). Denote by \(d_{G}(u)\) the degree of a vertex \(u\in V(G)\). The general sum-connectivity index of \(G\) is defined as \(\chi_{\alpha}(G)=\sum_{u_{1}u_2\in E(G)}(d_{G}(u_1)+d_{G}(u_2))^{\alpha}\), where \(\alpha\) is a real number....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Akhter, S., Farooq, R.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2020
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/281
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-281
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-2812020-07-08T07:13:20Z Computing bounds for the general sum-connectivity index of some graph operations Akhter, S. Farooq, R. general sum-connectivity index, Randi\'c index, corona product, strong product, symmetric difference 05C76, 05C07 Let \(G\) be a graph with vertex set \(V(G)\) and edge set \(E(G)\). Denote by \(d_{G}(u)\) the degree of a vertex \(u\in V(G)\). The general sum-connectivity index of \(G\) is defined as \(\chi_{\alpha}(G)=\sum_{u_{1}u_2\in E(G)}(d_{G}(u_1)+d_{G}(u_2))^{\alpha}\), where \(\alpha\) is a real number. In this paper, we compute the bounds for general sum-connectivity index of several graph operations. These operations include corona product, cartesian product, strong product, composition, join, disjunction and symmetric difference of graphs. We apply the obtained results to find the bounds for the general sum-connectivity index of some graphs of general interest. Lugansk National Taras Shevchenko University Higher Education Commission of Pakistan 2020-07-08 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/281 10.12958/adm281 Algebra and Discrete Mathematics; Vol 29, No 2 (2020) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/281/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/281/115 Copyright (c) 2020 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2020-07-08T07:13:20Z
collection OJS
language English
topic general sum-connectivity index
Randi\'c index
corona product
strong product
symmetric difference
05C76
05C07
spellingShingle general sum-connectivity index
Randi\'c index
corona product
strong product
symmetric difference
05C76
05C07
Akhter, S.
Farooq, R.
Computing bounds for the general sum-connectivity index of some graph operations
topic_facet general sum-connectivity index
Randi\'c index
corona product
strong product
symmetric difference
05C76
05C07
format Article
author Akhter, S.
Farooq, R.
author_facet Akhter, S.
Farooq, R.
author_sort Akhter, S.
title Computing bounds for the general sum-connectivity index of some graph operations
title_short Computing bounds for the general sum-connectivity index of some graph operations
title_full Computing bounds for the general sum-connectivity index of some graph operations
title_fullStr Computing bounds for the general sum-connectivity index of some graph operations
title_full_unstemmed Computing bounds for the general sum-connectivity index of some graph operations
title_sort computing bounds for the general sum-connectivity index of some graph operations
description Let \(G\) be a graph with vertex set \(V(G)\) and edge set \(E(G)\). Denote by \(d_{G}(u)\) the degree of a vertex \(u\in V(G)\). The general sum-connectivity index of \(G\) is defined as \(\chi_{\alpha}(G)=\sum_{u_{1}u_2\in E(G)}(d_{G}(u_1)+d_{G}(u_2))^{\alpha}\), where \(\alpha\) is a real number. In this paper, we compute the bounds for general sum-connectivity index of several graph operations. These operations include corona product, cartesian product, strong product, composition, join, disjunction and symmetric difference of graphs. We apply the obtained results to find the bounds for the general sum-connectivity index of some graphs of general interest.
publisher Lugansk National Taras Shevchenko University
publishDate 2020
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/281
work_keys_str_mv AT akhters computingboundsforthegeneralsumconnectivityindexofsomegraphoperations
AT farooqr computingboundsforthegeneralsumconnectivityindexofsomegraphoperations
first_indexed 2025-07-17T10:35:25Z
last_indexed 2025-07-17T10:35:25Z
_version_ 1837890038601351168