Modules in which every surjective endomorphism has a \(\delta\)-small kernel

In this paper, we introduce the notion of \(\delta\)-Hopfian modules. We give some properties  of these modules and provide a~characterization of semisimple rings in terms of \(\delta\)-Hopfian modules by  proving  that a ring \(R\) is semisimple if and only if every  \(R\)-module is \(\delta\)-Hopf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Ebrahimi Atani, Shahabaddin, Khoramdel, Mehdi, Dolati Pishhesari, Saboura
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2019
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/365
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-365
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-3652019-01-24T08:21:31Z Modules in which every surjective endomorphism has a \(\delta\)-small kernel Ebrahimi Atani, Shahabaddin Khoramdel, Mehdi Dolati Pishhesari, Saboura Dedekind finite modules, Hopfian modules, generalized Hopfian modules, \(\delta\)-Hopfian modules 16D10, 16D40, 16D90 In this paper, we introduce the notion of \(\delta\)-Hopfian modules. We give some properties  of these modules and provide a~characterization of semisimple rings in terms of \(\delta\)-Hopfian modules by  proving  that a ring \(R\) is semisimple if and only if every  \(R\)-module is \(\delta\)-Hopfian. Also,  we show  that for a ring \(R\), \(\delta(R)=J(R)\) if and only if for all \(R\)-modules, the conditions \(\delta\)-Hopfian and generalized Hopfian are equivalent.  Moreover, we prove that \(\delta\)-Hopfian property is a Morita invariant. Further, the \(\delta\)-Hopficity of modules over truncated polynomial and triangular matrix rings are considered. Lugansk National Taras Shevchenko University 2019-01-24 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/365 Algebra and Discrete Mathematics; Vol 26, No 2 (2018) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/365/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/365/150 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/365/444 Copyright (c) 2019 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2019-01-24T08:21:31Z
collection OJS
language English
topic Dedekind finite modules
Hopfian modules
generalized Hopfian modules
\(\delta\)-Hopfian modules
16D10
16D40
16D90
spellingShingle Dedekind finite modules
Hopfian modules
generalized Hopfian modules
\(\delta\)-Hopfian modules
16D10
16D40
16D90
Ebrahimi Atani, Shahabaddin
Khoramdel, Mehdi
Dolati Pishhesari, Saboura
Modules in which every surjective endomorphism has a \(\delta\)-small kernel
topic_facet Dedekind finite modules
Hopfian modules
generalized Hopfian modules
\(\delta\)-Hopfian modules
16D10
16D40
16D90
format Article
author Ebrahimi Atani, Shahabaddin
Khoramdel, Mehdi
Dolati Pishhesari, Saboura
author_facet Ebrahimi Atani, Shahabaddin
Khoramdel, Mehdi
Dolati Pishhesari, Saboura
author_sort Ebrahimi Atani, Shahabaddin
title Modules in which every surjective endomorphism has a \(\delta\)-small kernel
title_short Modules in which every surjective endomorphism has a \(\delta\)-small kernel
title_full Modules in which every surjective endomorphism has a \(\delta\)-small kernel
title_fullStr Modules in which every surjective endomorphism has a \(\delta\)-small kernel
title_full_unstemmed Modules in which every surjective endomorphism has a \(\delta\)-small kernel
title_sort modules in which every surjective endomorphism has a \(\delta\)-small kernel
description In this paper, we introduce the notion of \(\delta\)-Hopfian modules. We give some properties  of these modules and provide a~characterization of semisimple rings in terms of \(\delta\)-Hopfian modules by  proving  that a ring \(R\) is semisimple if and only if every  \(R\)-module is \(\delta\)-Hopfian. Also,  we show  that for a ring \(R\), \(\delta(R)=J(R)\) if and only if for all \(R\)-modules, the conditions \(\delta\)-Hopfian and generalized Hopfian are equivalent.  Moreover, we prove that \(\delta\)-Hopfian property is a Morita invariant. Further, the \(\delta\)-Hopficity of modules over truncated polynomial and triangular matrix rings are considered.
publisher Lugansk National Taras Shevchenko University
publishDate 2019
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/365
work_keys_str_mv AT ebrahimiatanishahabaddin modulesinwhicheverysurjectiveendomorphismhasadeltasmallkernel
AT khoramdelmehdi modulesinwhicheverysurjectiveendomorphismhasadeltasmallkernel
AT dolatipishhesarisaboura modulesinwhicheverysurjectiveendomorphismhasadeltasmallkernel
first_indexed 2025-07-17T10:32:39Z
last_indexed 2025-07-17T10:32:39Z
_version_ 1837889864779956224