On the lattice of cyclic codes over finite chain rings

In this paper, \(R\) is a finite chain ring of invariants \((q,s)\), and \(\ell\) is a positive integer fulfilling \(\operatorname{gcd}(\ell,q) = 1\). In the language of \(q\)-cyclotomic cosets modulo \(\ell\), the cyclic codes over \(R\) of length \(\ell\) are uniquely decomposed into a direct sum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Fotue-Tabue, Alexandre, Mouaha, Christophe
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2019
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/431
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-431
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-4312019-07-14T19:54:06Z On the lattice of cyclic codes over finite chain rings Fotue-Tabue, Alexandre Mouaha, Christophe finite chain rings, cyclotomic cosets, linear code, cyclic code, trace map 13B05, 94B05, 94B15, 03G10, 16P10 In this paper, \(R\) is a finite chain ring of invariants \((q,s)\), and \(\ell\) is a positive integer fulfilling \(\operatorname{gcd}(\ell,q) = 1\). In the language of \(q\)-cyclotomic cosets modulo \(\ell\), the cyclic codes over \(R\) of length \(\ell\) are uniquely decomposed into a direct sum of trace-representable cyclic codes over \(R\) and the lattice of cyclic codes over \(R\) of length \(\ell\) is investigated. Lugansk National Taras Shevchenko University 2019-07-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/431 Algebra and Discrete Mathematics; Vol 27, No 2 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/431/pdf Copyright (c) 2019 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2019-07-14T19:54:06Z
collection OJS
language English
topic finite chain rings
cyclotomic cosets
linear code
cyclic code
trace map
13B05
94B05
94B15
03G10
16P10
spellingShingle finite chain rings
cyclotomic cosets
linear code
cyclic code
trace map
13B05
94B05
94B15
03G10
16P10
Fotue-Tabue, Alexandre
Mouaha, Christophe
On the lattice of cyclic codes over finite chain rings
topic_facet finite chain rings
cyclotomic cosets
linear code
cyclic code
trace map
13B05
94B05
94B15
03G10
16P10
format Article
author Fotue-Tabue, Alexandre
Mouaha, Christophe
author_facet Fotue-Tabue, Alexandre
Mouaha, Christophe
author_sort Fotue-Tabue, Alexandre
title On the lattice of cyclic codes over finite chain rings
title_short On the lattice of cyclic codes over finite chain rings
title_full On the lattice of cyclic codes over finite chain rings
title_fullStr On the lattice of cyclic codes over finite chain rings
title_full_unstemmed On the lattice of cyclic codes over finite chain rings
title_sort on the lattice of cyclic codes over finite chain rings
description In this paper, \(R\) is a finite chain ring of invariants \((q,s)\), and \(\ell\) is a positive integer fulfilling \(\operatorname{gcd}(\ell,q) = 1\). In the language of \(q\)-cyclotomic cosets modulo \(\ell\), the cyclic codes over \(R\) of length \(\ell\) are uniquely decomposed into a direct sum of trace-representable cyclic codes over \(R\) and the lattice of cyclic codes over \(R\) of length \(\ell\) is investigated.
publisher Lugansk National Taras Shevchenko University
publishDate 2019
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/431
work_keys_str_mv AT fotuetabuealexandre onthelatticeofcycliccodesoverfinitechainrings
AT mouahachristophe onthelatticeofcycliccodesoverfinitechainrings
first_indexed 2025-07-17T10:34:29Z
last_indexed 2025-07-17T10:34:29Z
_version_ 1837889979510947840