A family of doubly stochastic matrices involving Chebyshev polynomials

A doubly stochastic matrix is a square matrix \(A=(a_{ij})\) of non-negative real numbers such that \(\sum_{i}a_{ij}=\sum_{j}a_{ij}=1\). The Chebyshev polynomial of the first kind is defined by the recurrence relation \(T_0(x)=1, T_1(x)=x\), and \[T_{n+1}(x)=2xT_n(x)-T_{n-1}(x).\]In this paper, we s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Ahmed, Tanbir, Caballero, José Manuel Rodriguez
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2019
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/557
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-557
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-5572019-07-14T19:54:06Z A family of doubly stochastic matrices involving Chebyshev polynomials Ahmed, Tanbir Caballero, José Manuel Rodriguez doubly stochastic matrices, Chebyshev polynomials A doubly stochastic matrix is a square matrix \(A=(a_{ij})\) of non-negative real numbers such that \(\sum_{i}a_{ij}=\sum_{j}a_{ij}=1\). The Chebyshev polynomial of the first kind is defined by the recurrence relation \(T_0(x)=1, T_1(x)=x\), and \[T_{n+1}(x)=2xT_n(x)-T_{n-1}(x).\]In this paper, we show a \(2^k\times 2^k\) (for each integer \(k\geq 1\)) doubly stochastic matrix whose characteristic polynomial is \(x^2-1\) times a product of irreducible Chebyshev polynomials of the first kind (up to rescaling by rational numbers). Lugansk National Taras Shevchenko University 2019-07-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/557 Algebra and Discrete Mathematics; Vol 27, No 2 (2019) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/557/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/557/540 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/557/541 Copyright (c) 2019 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic doubly stochastic matrices
Chebyshev polynomials

spellingShingle doubly stochastic matrices
Chebyshev polynomials

Ahmed, Tanbir
Caballero, José Manuel Rodriguez
A family of doubly stochastic matrices involving Chebyshev polynomials
topic_facet doubly stochastic matrices
Chebyshev polynomials

format Article
author Ahmed, Tanbir
Caballero, José Manuel Rodriguez
author_facet Ahmed, Tanbir
Caballero, José Manuel Rodriguez
author_sort Ahmed, Tanbir
title A family of doubly stochastic matrices involving Chebyshev polynomials
title_short A family of doubly stochastic matrices involving Chebyshev polynomials
title_full A family of doubly stochastic matrices involving Chebyshev polynomials
title_fullStr A family of doubly stochastic matrices involving Chebyshev polynomials
title_full_unstemmed A family of doubly stochastic matrices involving Chebyshev polynomials
title_sort family of doubly stochastic matrices involving chebyshev polynomials
description A doubly stochastic matrix is a square matrix \(A=(a_{ij})\) of non-negative real numbers such that \(\sum_{i}a_{ij}=\sum_{j}a_{ij}=1\). The Chebyshev polynomial of the first kind is defined by the recurrence relation \(T_0(x)=1, T_1(x)=x\), and \[T_{n+1}(x)=2xT_n(x)-T_{n-1}(x).\]In this paper, we show a \(2^k\times 2^k\) (for each integer \(k\geq 1\)) doubly stochastic matrix whose characteristic polynomial is \(x^2-1\) times a product of irreducible Chebyshev polynomials of the first kind (up to rescaling by rational numbers).
publisher Lugansk National Taras Shevchenko University
publishDate 2019
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/557
work_keys_str_mv AT ahmedtanbir afamilyofdoublystochasticmatricesinvolvingchebyshevpolynomials
AT caballerojosemanuelrodriguez afamilyofdoublystochasticmatricesinvolvingchebyshevpolynomials
AT ahmedtanbir familyofdoublystochasticmatricesinvolvingchebyshevpolynomials
AT caballerojosemanuelrodriguez familyofdoublystochasticmatricesinvolvingchebyshevpolynomials
first_indexed 2024-04-12T06:25:19Z
last_indexed 2024-04-12T06:25:19Z
_version_ 1796109220359176192