The groups whose cyclic subgroups are either ascendant or almost self-normalizing

The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation.

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Kurdachenko, Leonid A., Pypka, Aleksandr A., Semko, Nikolaj N.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2016
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/63
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-63
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-632016-05-11T05:58:14Z The groups whose cyclic subgroups are either ascendant or almost self-normalizing Kurdachenko, Leonid A. Pypka, Aleksandr A. Semko, Nikolaj N. locally finite group; self-normalizing subgroup; ascendant subgroup; subnormal subgroup; Gruenberg radical; Baer radical 20E15; 20F19; 20F22; 20F50 The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation. Lugansk National Taras Shevchenko University 2016-05-10 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/63 Algebra and Discrete Mathematics; Vol 21, No 1 (2016) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/63/pdf Copyright (c) 2016 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2016-05-11T05:58:14Z
collection OJS
language English
topic locally finite group
self-normalizing subgroup
ascendant subgroup
subnormal subgroup
Gruenberg radical
Baer radical
20E15
20F19
20F22
20F50
spellingShingle locally finite group
self-normalizing subgroup
ascendant subgroup
subnormal subgroup
Gruenberg radical
Baer radical
20E15
20F19
20F22
20F50
Kurdachenko, Leonid A.
Pypka, Aleksandr A.
Semko, Nikolaj N.
The groups whose cyclic subgroups are either ascendant or almost self-normalizing
topic_facet locally finite group
self-normalizing subgroup
ascendant subgroup
subnormal subgroup
Gruenberg radical
Baer radical
20E15
20F19
20F22
20F50
format Article
author Kurdachenko, Leonid A.
Pypka, Aleksandr A.
Semko, Nikolaj N.
author_facet Kurdachenko, Leonid A.
Pypka, Aleksandr A.
Semko, Nikolaj N.
author_sort Kurdachenko, Leonid A.
title The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_short The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_full The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_fullStr The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_full_unstemmed The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_sort groups whose cyclic subgroups are either ascendant or almost self-normalizing
description The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation.
publisher Lugansk National Taras Shevchenko University
publishDate 2016
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/63
work_keys_str_mv AT kurdachenkoleonida thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT pypkaaleksandra thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT semkonikolajn thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT kurdachenkoleonida groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT pypkaaleksandra groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT semkonikolajn groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
first_indexed 2025-07-17T10:35:32Z
last_indexed 2025-07-17T10:35:32Z
_version_ 1837890046162632704