A generalization of supplemented modules

Let \(R\) be an arbitrary ring with identity and \(M\) a right \(R\)-module. In this paper, we introduce a class of modules which is an analogous of  \(\delta\)-supplemented modules defined by Kosan. The module \(M\) is called  principally \(\delta\)-supplemented, for all \(m\in M\) there exists a s...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Inankil, Hatice, Halıcıoglu, Sait, Harmanci, Abdullah
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/660
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-660
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-6602018-04-04T09:21:34Z A generalization of supplemented modules Inankil, Hatice Halıcıoglu, Sait Harmanci, Abdullah supplemented modules, \(\delta\)-supplemented modules, principally \(\delta\)-supplemented modules, semiperfect modules, \(\delta\)-semiperfect modules, principally \(\delta\)-semiperfect modules 16U80 Let \(R\) be an arbitrary ring with identity and \(M\) a right \(R\)-module. In this paper, we introduce a class of modules which is an analogous of  \(\delta\)-supplemented modules defined by Kosan. The module \(M\) is called  principally \(\delta\)-supplemented, for all \(m\in M\) there exists a submodule \(A\) of \(M\) with \(M = mR + A\) and \((mR)\cap A\) \(\delta\)-small in \(A\). We prove that some results of \(\delta\)-supplemented modules can be extended to principally \(\delta\)-supplemented modules for this general settings. We supply some examples showing that there are principally \(\delta\)-supplemented modules but not \(\delta\)-supplemented. We also introduce principally \(\delta\)-semiperfect modules as a generalization of \(\delta\)-semiperfect modules and investigate their properties. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/660 Algebra and Discrete Mathematics; Vol 11, No 1 (2011) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/660/194 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T09:21:34Z
collection OJS
language English
topic supplemented modules
\(\delta\)-supplemented modules
principally \(\delta\)-supplemented modules
semiperfect modules
\(\delta\)-semiperfect modules
principally \(\delta\)-semiperfect modules
16U80
spellingShingle supplemented modules
\(\delta\)-supplemented modules
principally \(\delta\)-supplemented modules
semiperfect modules
\(\delta\)-semiperfect modules
principally \(\delta\)-semiperfect modules
16U80
Inankil, Hatice
Halıcıoglu, Sait
Harmanci, Abdullah
A generalization of supplemented modules
topic_facet supplemented modules
\(\delta\)-supplemented modules
principally \(\delta\)-supplemented modules
semiperfect modules
\(\delta\)-semiperfect modules
principally \(\delta\)-semiperfect modules
16U80
format Article
author Inankil, Hatice
Halıcıoglu, Sait
Harmanci, Abdullah
author_facet Inankil, Hatice
Halıcıoglu, Sait
Harmanci, Abdullah
author_sort Inankil, Hatice
title A generalization of supplemented modules
title_short A generalization of supplemented modules
title_full A generalization of supplemented modules
title_fullStr A generalization of supplemented modules
title_full_unstemmed A generalization of supplemented modules
title_sort generalization of supplemented modules
description Let \(R\) be an arbitrary ring with identity and \(M\) a right \(R\)-module. In this paper, we introduce a class of modules which is an analogous of  \(\delta\)-supplemented modules defined by Kosan. The module \(M\) is called  principally \(\delta\)-supplemented, for all \(m\in M\) there exists a submodule \(A\) of \(M\) with \(M = mR + A\) and \((mR)\cap A\) \(\delta\)-small in \(A\). We prove that some results of \(\delta\)-supplemented modules can be extended to principally \(\delta\)-supplemented modules for this general settings. We supply some examples showing that there are principally \(\delta\)-supplemented modules but not \(\delta\)-supplemented. We also introduce principally \(\delta\)-semiperfect modules as a generalization of \(\delta\)-semiperfect modules and investigate their properties.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/660
work_keys_str_mv AT inankilhatice ageneralizationofsupplementedmodules
AT halıcıoglusait ageneralizationofsupplementedmodules
AT harmanciabdullah ageneralizationofsupplementedmodules
AT inankilhatice generalizationofsupplementedmodules
AT halıcıoglusait generalizationofsupplementedmodules
AT harmanciabdullah generalizationofsupplementedmodules
first_indexed 2025-07-17T10:35:36Z
last_indexed 2025-07-17T10:35:36Z
_version_ 1837890049678508032