On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point

In this paper we study the semigroup \(\mathfrak{IC}(I,[a])\) (\(\mathfrak{IO}(I,[a])\)) of closed (open) connected partial homeomorphisms of the unit interval \(I\) with a fixed point \(a\in I\). We describe left and right ideals of \(\mathfrak{IC}(I,[0])\) and the Green's relations on \(\math...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Chuchman, Ivan
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/680
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:In this paper we study the semigroup \(\mathfrak{IC}(I,[a])\) (\(\mathfrak{IO}(I,[a])\)) of closed (open) connected partial homeomorphisms of the unit interval \(I\) with a fixed point \(a\in I\). We describe left and right ideals of \(\mathfrak{IC}(I,[0])\) and the Green's relations on \(\mathfrak{IC}(I,[0])\). We show that the semigroup \(\mathfrak{IC}(I,[0])\) is bisimple and every non-trivial congruence on \(\mathfrak{IC}(I,[0])\) is a group congruence. Also we prove that the semigroup \(\mathfrak{IC}(I,[0])\) is isomorphic to the semigroup \(\mathfrak{IO}(I,[0])\) and describe the structure of a semigroup \(\mathfrak{II}(I,[0])=\mathfrak{IC}(I,[0])\sqcup \mathfrak{IO}(I,[0])\). As a corollary we get structures of semigroups \(\mathfrak{IC}(I,[a])\) and \(\mathfrak{IO}(I,[a])\) for an interior point \(a\in I\).