Generalized symmetric rings

In this paper, we introduce a class of rings which is a generalization of symmetric rings. Let \(R\) be a ring with identity.  A ring \(R\) is called  central symmetric if for any \(a\), \(b, c\in R\),  \(abc = 0\) implies bac belongs to the center of \(R\).  Since every symmetric ring is central sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Kafkas, G., Ungor, B., Halicioglu, S., Harmanci, A.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/683
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:In this paper, we introduce a class of rings which is a generalization of symmetric rings. Let \(R\) be a ring with identity.  A ring \(R\) is called  central symmetric if for any \(a\), \(b, c\in R\),  \(abc = 0\) implies bac belongs to the center of \(R\).  Since every symmetric ring is central symmetric, we study sufficient conditions for central symmetric rings to be symmetric.  We prove that some results of symmetric rings can be extended to central symmetric rings for this general settings. We show  that every central reduced ring is central symmetric, every central symmetric ring is central reversible, central semmicommutative, 2-primal, abelian and so directly finite. It is proven that the polynomial ring \(R[x]\) is central symmetric if and only if the Laurent polynomial ring \(R[x, x^{-1}]\) is central symmetric. Among others, it is shown that for a right principally projective ring \(R\), \(R\) is central symmetric if and only if \(R[x]/(x^n)\) is central Armendariz, where \(n\geq 2~\) is a natural number and \((x^n)\) is the ideal generated by \(x^n\).