Generalized symmetric rings

In this paper, we introduce a class of rings which is a generalization of symmetric rings. Let \(R\) be a ring with identity.  A ring \(R\) is called  central symmetric if for any \(a\), \(b, c\in R\),  \(abc = 0\) implies bac belongs to the center of \(R\).  Since every symmetric ring is central sy...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Kafkas, G., Ungor, B., Halicioglu, S., Harmanci, A.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/683
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:In this paper, we introduce a class of rings which is a generalization of symmetric rings. Let \(R\) be a ring with identity.  A ring \(R\) is called  central symmetric if for any \(a\), \(b, c\in R\),  \(abc = 0\) implies bac belongs to the center of \(R\).  Since every symmetric ring is central symmetric, we study sufficient conditions for central symmetric rings to be symmetric.  We prove that some results of symmetric rings can be extended to central symmetric rings for this general settings. We show  that every central reduced ring is central symmetric, every central symmetric ring is central reversible, central semmicommutative, 2-primal, abelian and so directly finite. It is proven that the polynomial ring \(R[x]\) is central symmetric if and only if the Laurent polynomial ring \(R[x, x^{-1}]\) is central symmetric. Among others, it is shown that for a right principally projective ring \(R\), \(R\) is central symmetric if and only if \(R[x]/(x^n)\) is central Armendariz, where \(n\geq 2~\) is a natural number and \((x^n)\) is the ideal generated by \(x^n\).