The upper edge-to-vertex detour number of a graph
For two vertices \(u\) and \(v\) in a graph \(G = (V, E)\), the detour distance \(D(u, v)\) is the length of a longest \(u\)-\(v\) path in \(G\). A \(u\)-\(v\) path of length \(D(u, v)\) is called a \(u\)-\(v\) detour. For subsets \(A\) and \(B\) of \(V\), the detour distance \(D(A, B)\) is defined...
Saved in:
Date: | 2018 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2018
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/697 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Algebra and Discrete Mathematics |