On c-normal and hypercentrally embeded subgroups of finite groups
In this article, we investigate the structure of a finite group \g under the assumption that some subgroups of \g are c-normal in $G$. The main theorem is as follows:Let \e be a normal finite group of $G$. If all subgroups of \ep with order \dpp and 2\dpp (if $p=2$ and $E_{p}$ is not an abelian nor...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2015
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/70 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-70 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-702015-09-28T11:22:08Z On c-normal and hypercentrally embeded subgroups of finite groups Su, Ning Wang, Yanming c-normal, hypercenter, p-supersolvable, p-nilpotent 20D10 In this article, we investigate the structure of a finite group \g under the assumption that some subgroups of \g are c-normal in $G$. The main theorem is as follows:Let \e be a normal finite group of $G$. If all subgroups of \ep with order \dpp and 2\dpp (if $p=2$ and $E_{p}$ is not an abelian nor quaternion free 2-group) are c-normal in $G$, then \e is \phe $G$.We give some applications of the theorem and generalize some known results. Lugansk National Taras Shevchenko University The research has been supported by NSF China (11171353) 2015-09-28 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/70 Algebra and Discrete Mathematics; Vol 19, No 2 (2015) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/70/19 Copyright (c) 2015 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
baseUrl_str |
|
datestamp_date |
2015-09-28T11:22:08Z |
collection |
OJS |
language |
English |
topic |
c-normal hypercenter p-supersolvable p-nilpotent 20D10 |
spellingShingle |
c-normal hypercenter p-supersolvable p-nilpotent 20D10 Su, Ning Wang, Yanming On c-normal and hypercentrally embeded subgroups of finite groups |
topic_facet |
c-normal hypercenter p-supersolvable p-nilpotent 20D10 |
format |
Article |
author |
Su, Ning Wang, Yanming |
author_facet |
Su, Ning Wang, Yanming |
author_sort |
Su, Ning |
title |
On c-normal and hypercentrally embeded subgroups of finite groups |
title_short |
On c-normal and hypercentrally embeded subgroups of finite groups |
title_full |
On c-normal and hypercentrally embeded subgroups of finite groups |
title_fullStr |
On c-normal and hypercentrally embeded subgroups of finite groups |
title_full_unstemmed |
On c-normal and hypercentrally embeded subgroups of finite groups |
title_sort |
on c-normal and hypercentrally embeded subgroups of finite groups |
description |
In this article, we investigate the structure of a finite group \g under the assumption that some subgroups of \g are c-normal in $G$. The main theorem is as follows:Let \e be a normal finite group of $G$. If all subgroups of \ep with order \dpp and 2\dpp (if $p=2$ and $E_{p}$ is not an abelian nor quaternion free 2-group) are c-normal in $G$, then \e is \phe $G$.We give some applications of the theorem and generalize some known results. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2015 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/70 |
work_keys_str_mv |
AT suning oncnormalandhypercentrallyembededsubgroupsoffinitegroups AT wangyanming oncnormalandhypercentrallyembededsubgroupsoffinitegroups |
first_indexed |
2025-07-17T10:31:28Z |
last_indexed |
2025-07-17T10:31:28Z |
_version_ |
1837890138070319104 |