On locally nilpotent derivations of Fermat rings

Let \(B_n^m =\frac{\mathbb{C}[X_1,\ldots, X_n]}{(X_1^m+\cdots +X_n^m)}\) (Fermat ring), where \(m\geq2\) and \(n\geq3\).  In a recent paper  D. Fiston and S. Maubach  show that for \(m\geq n^2-2n\)  the unique locally nilpotent derivation of \(B_n^m\) is the zero derivation. In this note we prove th...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Brumatti, Paulo Roberto, Veloso, Marcelo Oliveira
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/752
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics