On action of outer derivations on nilpotent ideals of Lie algebras

Action of outer derivations on nilpotent ideals of Lie algebras are considered.  It is shown that for a nilpotent ideal \(I\) of a Lie algebra \(L\) over a field \(F\) the ideal \(I+D(I)\) is nilpotent, provided that \(charF=0\) or \(I\)  nilpotent of nilpotency class less than \(p-1\), where \(p=ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Maksimenko, Dmitriy V.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/770
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:Action of outer derivations on nilpotent ideals of Lie algebras are considered.  It is shown that for a nilpotent ideal \(I\) of a Lie algebra \(L\) over a field \(F\) the ideal \(I+D(I)\) is nilpotent, provided that \(charF=0\) or \(I\)  nilpotent of nilpotency class less than \(p-1\), where \(p=char F\). In particular, the sum \(N(L)\) of all nilpotent ideals of a Lie algebra \(L\) is a characteristic ideal, if \(charF=0\) or \(N(L)\) is  nilpotent  of  class less than \(p-1\), where \(p=char F\).