On colouring integers avoiding \(t\)-AP distance-sets

A \(t\)-AP is a sequence of the form \(a,a+d,\ldots, a+(t-1)d\),where \(a,d\in \mathbb{Z}\). Given a finite set \(X\) and positive integers \(d\), \(t\), \(a_1,a_2,\ldots,a_{t-1}\), define \(\nu(X,d) = |\{(x,y):{x,y\in{X}},{y>x},{y-x=d}\}|\), \((a_1,a_2,\ldots,a_{t-1};d) =\) a collection \(X\...

Full description

Saved in:
Bibliographic Details
Date:2016
Main Author: Ahmed, Tanbir
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2016
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/78
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-78
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-782016-11-15T13:03:03Z On colouring integers avoiding \(t\)-AP distance-sets Ahmed, Tanbir distance sets, colouring integers, sets and sequences 05D10 A \(t\)-AP is a sequence of the form \(a,a+d,\ldots, a+(t-1)d\),where \(a,d\in \mathbb{Z}\). Given a finite set \(X\) and positive integers \(d\), \(t\), \(a_1,a_2,\ldots,a_{t-1}\), define \(\nu(X,d) = |\{(x,y):{x,y\in{X}},{y>x},{y-x=d}\}|\), \((a_1,a_2,\ldots,a_{t-1};d) =\) a collection \(X\) s.t. \(\nu(X,d\cdot{i})\geq a_i\) for \(1\leq i\leq t-1\).In this paper, we investigatethe structure of sets with bounded number of pairs with certain gaps.Let \((t-1,t-2,\ldots,1; d)\) be called a \emph{\(t\)-AP distance-set} of size at least \(t\).A \(k\)-colouring of integers \(1,2,\ldots, n\) is a mapping \(\{1,2,\ldots,n\}\rightarrow \{0,1,\ldots,k-1\}\) where\(0,1,\ldots,k-1\) are colours.Let \(ww(k,t)\) denote thesmallest positive integer \(n\) such that every \(k\)-colouring of \(1,2,\ldots,n\)contains a monochromatic \(t\)-AP distance-set for some \(d>0\).We conjecture that \(ww(2,t)\geq t^2\) and prove the lower bound for most cases.We also generalize the notion of \(ww(k,t)\) and prove several lower bounds. Lugansk National Taras Shevchenko University 2016-11-15 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/78 Algebra and Discrete Mathematics; Vol 22, No 1 (2016) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/78/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/78/16 https://admjournal.luguniv.edu.ua/index.php/adm/article/downloadSuppFile/78/40 Copyright (c) 2016 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2016-11-15T13:03:03Z
collection OJS
language English
topic distance sets
colouring integers
sets and sequences
05D10
spellingShingle distance sets
colouring integers
sets and sequences
05D10
Ahmed, Tanbir
On colouring integers avoiding \(t\)-AP distance-sets
topic_facet distance sets
colouring integers
sets and sequences
05D10
format Article
author Ahmed, Tanbir
author_facet Ahmed, Tanbir
author_sort Ahmed, Tanbir
title On colouring integers avoiding \(t\)-AP distance-sets
title_short On colouring integers avoiding \(t\)-AP distance-sets
title_full On colouring integers avoiding \(t\)-AP distance-sets
title_fullStr On colouring integers avoiding \(t\)-AP distance-sets
title_full_unstemmed On colouring integers avoiding \(t\)-AP distance-sets
title_sort on colouring integers avoiding \(t\)-ap distance-sets
description A \(t\)-AP is a sequence of the form \(a,a+d,\ldots, a+(t-1)d\),where \(a,d\in \mathbb{Z}\). Given a finite set \(X\) and positive integers \(d\), \(t\), \(a_1,a_2,\ldots,a_{t-1}\), define \(\nu(X,d) = |\{(x,y):{x,y\in{X}},{y>x},{y-x=d}\}|\), \((a_1,a_2,\ldots,a_{t-1};d) =\) a collection \(X\) s.t. \(\nu(X,d\cdot{i})\geq a_i\) for \(1\leq i\leq t-1\).In this paper, we investigatethe structure of sets with bounded number of pairs with certain gaps.Let \((t-1,t-2,\ldots,1; d)\) be called a \emph{\(t\)-AP distance-set} of size at least \(t\).A \(k\)-colouring of integers \(1,2,\ldots, n\) is a mapping \(\{1,2,\ldots,n\}\rightarrow \{0,1,\ldots,k-1\}\) where\(0,1,\ldots,k-1\) are colours.Let \(ww(k,t)\) denote thesmallest positive integer \(n\) such that every \(k\)-colouring of \(1,2,\ldots,n\)contains a monochromatic \(t\)-AP distance-set for some \(d>0\).We conjecture that \(ww(2,t)\geq t^2\) and prove the lower bound for most cases.We also generalize the notion of \(ww(k,t)\) and prove several lower bounds.
publisher Lugansk National Taras Shevchenko University
publishDate 2016
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/78
work_keys_str_mv AT ahmedtanbir oncolouringintegersavoidingtapdistancesets
first_indexed 2025-07-17T10:33:54Z
last_indexed 2025-07-17T10:33:54Z
_version_ 1837889942968074240