On Galois groups of prime degree polynomials with complex roots
Let \(f\) be an irreducible polynomial of prime degree \(p\geq 5\) over \({\mathbb Q}\), with precisely \(k\) pairs of complex roots. Using a result of Jens Hochsmann (1999), show that if \(p\geq 4k+1\) then \(\operatorname{Gal}(f/{\mathbb Q})\) is isomorphic to \(A_{p}\) or \(S_{p}\). This improv...
Gespeichert in:
Datum: | 2018 |
---|---|
1. Verfasser: | Ben-Shimol, Oz |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/780 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
On Galois groups of prime degree polynomials with complex roots
von: Oz Ben-Shimol
Veröffentlicht: (2009) -
Kaluzhnin's representations of Sylow \(p\)-subgroups of automorphism groups of \(p\)-adic rooted trees
von: Bier, Agnieszka, et al.
Veröffentlicht: (2018) -
A note to our paper “Automorphisms of homogeneous symmetric groups and hierarchomorphisms of rooted trees”
von: Lavrenyuk, Yaroslav V., et al.
Veröffentlicht: (2018) -
A variant of the primitive element theorem for separable extensions of a commutative ring
von: Bagio, Dirceu, et al.
Veröffentlicht: (2018) -
Dynamics of finite groups acting on the boundary of homogenous rooted tree
von: Szaszkowski, Zbigniew
Veröffentlicht: (2018)