On fully wild categories of representations of posets

Assume that \(I\) is a finite partially ordered set and \(k\) is a field. We prove that if the category \(\mbox{ prin}(kI)\) of prinjective modules over the incidence \(k\)-algebra \(kI\) of \(I\) is fully \(k\)-wild then the category \({\bf fpr}(I,k)\) of finite dimensional \(k\)-representations of...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Author: Kasjan, Stanislaw
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/899
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-899
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-8992018-03-21T07:07:28Z On fully wild categories of representations of posets Kasjan, Stanislaw representations of posets, wild, fully wild representation type, endofunctors of wild module category 16G60, 16G30, 03C60 Assume that \(I\) is a finite partially ordered set and \(k\) is a field. We prove that if the category \(\mbox{ prin}(kI)\) of prinjective modules over the incidence \(k\)-algebra \(kI\) of \(I\) is fully \(k\)-wild then the category \({\bf fpr}(I,k)\) of finite dimensional \(k\)-representations of \(I\) is also fully \(k\)-wild. A key argument is a construction of fully faithful exact endofunctors of the category of finite dimensional \(k\langle x,y\rangle\)-modules, with the image contained in certain subcategories. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/899 Algebra and Discrete Mathematics; Vol 5, No 3 (2006) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/899/428 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-03-21T07:07:28Z
collection OJS
language English
topic representations of posets
wild
fully wild representation type
endofunctors of wild module category
16G60
16G30
03C60
spellingShingle representations of posets
wild
fully wild representation type
endofunctors of wild module category
16G60
16G30
03C60
Kasjan, Stanislaw
On fully wild categories of representations of posets
topic_facet representations of posets
wild
fully wild representation type
endofunctors of wild module category
16G60
16G30
03C60
format Article
author Kasjan, Stanislaw
author_facet Kasjan, Stanislaw
author_sort Kasjan, Stanislaw
title On fully wild categories of representations of posets
title_short On fully wild categories of representations of posets
title_full On fully wild categories of representations of posets
title_fullStr On fully wild categories of representations of posets
title_full_unstemmed On fully wild categories of representations of posets
title_sort on fully wild categories of representations of posets
description Assume that \(I\) is a finite partially ordered set and \(k\) is a field. We prove that if the category \(\mbox{ prin}(kI)\) of prinjective modules over the incidence \(k\)-algebra \(kI\) of \(I\) is fully \(k\)-wild then the category \({\bf fpr}(I,k)\) of finite dimensional \(k\)-representations of \(I\) is also fully \(k\)-wild. A key argument is a construction of fully faithful exact endofunctors of the category of finite dimensional \(k\langle x,y\rangle\)-modules, with the image contained in certain subcategories.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/899
work_keys_str_mv AT kasjanstanislaw onfullywildcategoriesofrepresentationsofposets
first_indexed 2025-07-17T10:31:44Z
last_indexed 2025-07-17T10:31:44Z
_version_ 1837890141337681920