On the Amitsur property of radicals
The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical \(\gamma\) has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: \(f(x) \in \gamma(A[x])\) implies \(f(0) \in \gamma(A[x])\)....
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/900 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-900 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-9002018-03-21T07:07:28Z On the Amitsur property of radicals Loi, N. V. Wiegandt, R. Amitsur property, hereditary, normal and generalized nil radical 16N60 The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical \(\gamma\) has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: \(f(x) \in \gamma(A[x])\) implies \(f(0) \in \gamma(A[x])\). Applying this criterion, it is proved that the generalized nil radical has the Amitsur property. In this way the Amitsur property of a not necessarily hereditary normal radical can be checked. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/900 Algebra and Discrete Mathematics; Vol 5, No 3 (2006) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/900/429 Copyright (c) 2018 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
baseUrl_str |
|
datestamp_date |
2018-03-21T07:07:28Z |
collection |
OJS |
language |
English |
topic |
Amitsur property hereditary normal and generalized nil radical 16N60 |
spellingShingle |
Amitsur property hereditary normal and generalized nil radical 16N60 Loi, N. V. Wiegandt, R. On the Amitsur property of radicals |
topic_facet |
Amitsur property hereditary normal and generalized nil radical 16N60 |
format |
Article |
author |
Loi, N. V. Wiegandt, R. |
author_facet |
Loi, N. V. Wiegandt, R. |
author_sort |
Loi, N. V. |
title |
On the Amitsur property of radicals |
title_short |
On the Amitsur property of radicals |
title_full |
On the Amitsur property of radicals |
title_fullStr |
On the Amitsur property of radicals |
title_full_unstemmed |
On the Amitsur property of radicals |
title_sort |
on the amitsur property of radicals |
description |
The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical \(\gamma\) has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: \(f(x) \in \gamma(A[x])\) implies \(f(0) \in \gamma(A[x])\). Applying this criterion, it is proved that the generalized nil radical has the Amitsur property. In this way the Amitsur property of a not necessarily hereditary normal radical can be checked. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2018 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/900 |
work_keys_str_mv |
AT loinv ontheamitsurpropertyofradicals AT wiegandtr ontheamitsurpropertyofradicals |
first_indexed |
2025-07-17T10:33:04Z |
last_indexed |
2025-07-17T10:33:04Z |
_version_ |
1837889890431270912 |