Topological semigroups of matrix units

We prove that the semigroup of matrix units is stable. Compact, countably compact and pseudocompact topologies \(\tau\) on the infinite semigroup of matrix units \(B_\lambda\) such that \((B_\lambda,\tau)\) is a semitopological (inverse) semigroup are described. We prove the following properties of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Gutik, Oleg V., Pavlyk, Kateryna P.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/924
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:We prove that the semigroup of matrix units is stable. Compact, countably compact and pseudocompact topologies \(\tau\) on the infinite semigroup of matrix units \(B_\lambda\) such that \((B_\lambda,\tau)\) is a semitopological (inverse) semigroup are described. We prove the following properties of an infinite topological semigroup of matrix units. On the infinite semigroup of matrix units there exists no semigroup pseudocompact topology. Any continuous homomorphism from the infinite topological semigroup of matrix units into a compact topological semigroup is annihilating. The semigroup of matrix units is algebraically \(h\)-closed in the class of topological inverse semigroups. Some \(H\)-closed minimal semigroup topologies on the infinite semigroup of matrix units are considered.