On bounded \(m\)-reducibilities

Conditions for classes \({\mathfrak F}^1,{\mathfrak F}^0\) of non-decreasing total one-place arithmetic functions to define reducibility   \(\leq_m[^{{\mathfrak R}^1}_{{\mathfrak R}^0}]\leftrightharpoons\{(A,B)|A,B\subseteq\mathbb N\ \&\ (\exists \mbox{ r.f. }\ h) (\exists f_1\in{\mathfrak F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Belyaev, Vladimir N.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/932
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:Conditions for classes \({\mathfrak F}^1,{\mathfrak F}^0\) of non-decreasing total one-place arithmetic functions to define reducibility   \(\leq_m[^{{\mathfrak R}^1}_{{\mathfrak R}^0}]\leftrightharpoons\{(A,B)|A,B\subseteq\mathbb N\ \&\ (\exists \mbox{ r.f. }\ h) (\exists f_1\in{\mathfrak F}^1)(\exists f_0\in{\mathfrak F}^0) \) \([A\le_m^h\,B\ \&\ f_0\unlhd h\unlhd f_1]\}\) where \(k\unlhd l\) means that function \(l\) majors function \(k\) almost everywhere are studied. It is proved that the system of these reducibilities is highly ramified, and examples are constructed which differ drastically \(\leq_m[^{{\mathfrak R}^1}_{{\mathfrak R}^0}]\) from the standard m-reducibility  with respect to systems of degrees. Indecomposable and recursive degrees are considered.