On bounded \(m\)-reducibilities

Conditions for classes \({\mathfrak F}^1,{\mathfrak F}^0\) of non-decreasing total one-place arithmetic functions to define reducibility   \(\leq_m[^{{\mathfrak R}^1}_{{\mathfrak R}^0}]\leftrightharpoons\{(A,B)|A,B\subseteq\mathbb N\ \&\ (\exists \mbox{ r.f. }\ h) (\exists f_1\in{\mathfrak F...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Author: Belyaev, Vladimir N.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/932
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:Conditions for classes \({\mathfrak F}^1,{\mathfrak F}^0\) of non-decreasing total one-place arithmetic functions to define reducibility   \(\leq_m[^{{\mathfrak R}^1}_{{\mathfrak R}^0}]\leftrightharpoons\{(A,B)|A,B\subseteq\mathbb N\ \&\ (\exists \mbox{ r.f. }\ h) (\exists f_1\in{\mathfrak F}^1)(\exists f_0\in{\mathfrak F}^0) \) \([A\le_m^h\,B\ \&\ f_0\unlhd h\unlhd f_1]\}\) where \(k\unlhd l\) means that function \(l\) majors function \(k\) almost everywhere are studied. It is proved that the system of these reducibilities is highly ramified, and examples are constructed which differ drastically \(\leq_m[^{{\mathfrak R}^1}_{{\mathfrak R}^0}]\) from the standard m-reducibility  with respect to systems of degrees. Indecomposable and recursive degrees are considered.