On strongly graded Gorestein orders

Let \(G\) be a finite group and let \(\Lambda=\oplus_{g \in G}\Lambda_{g}\) be a strongly \(G\)-graded \(R\)-algebra, where \(R\) is a commutative ring  with unity. We prove that if \(R\) is a Dedekind domain with quotient field \(K\), \(\Lambda\) is an \(R\)-order in a separable \(K\)-algebra such...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Theohari-Apostolidi, Th., Vavatsoulas, H.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/937
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-937
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-9372018-03-21T06:34:59Z On strongly graded Gorestein orders Theohari-Apostolidi, Th. Vavatsoulas, H. strongly graded rings, Gorenstein orders, symmetric algebras 16H05, 16G30, 16S35, 16G10, 16W50 Let \(G\) be a finite group and let \(\Lambda=\oplus_{g \in G}\Lambda_{g}\) be a strongly \(G\)-graded \(R\)-algebra, where \(R\) is a commutative ring  with unity. We prove that if \(R\) is a Dedekind domain with quotient field \(K\), \(\Lambda\) is an \(R\)-order in a separable \(K\)-algebra such that the algebra \(\Lambda_{1}\) is a Gorenstein \(R\)-order, then \(\Lambda\) is also a Gorenstein \(R\)-order. Moreover, we prove that the induction functor \(ind:\ Mod\Lambda_{H}\rightarrow\ Mod\Lambda \) defined in Section 3, for a subgroup \(H\) of \(G\), commutes with the standard duality functor. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/937 Algebra and Discrete Mathematics; Vol 4, No 2 (2005) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/937/466 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-03-21T06:34:59Z
collection OJS
language English
topic strongly graded rings
Gorenstein orders
symmetric algebras
16H05
16G30
16S35
16G10
16W50
spellingShingle strongly graded rings
Gorenstein orders
symmetric algebras
16H05
16G30
16S35
16G10
16W50
Theohari-Apostolidi, Th.
Vavatsoulas, H.
On strongly graded Gorestein orders
topic_facet strongly graded rings
Gorenstein orders
symmetric algebras
16H05
16G30
16S35
16G10
16W50
format Article
author Theohari-Apostolidi, Th.
Vavatsoulas, H.
author_facet Theohari-Apostolidi, Th.
Vavatsoulas, H.
author_sort Theohari-Apostolidi, Th.
title On strongly graded Gorestein orders
title_short On strongly graded Gorestein orders
title_full On strongly graded Gorestein orders
title_fullStr On strongly graded Gorestein orders
title_full_unstemmed On strongly graded Gorestein orders
title_sort on strongly graded gorestein orders
description Let \(G\) be a finite group and let \(\Lambda=\oplus_{g \in G}\Lambda_{g}\) be a strongly \(G\)-graded \(R\)-algebra, where \(R\) is a commutative ring  with unity. We prove that if \(R\) is a Dedekind domain with quotient field \(K\), \(\Lambda\) is an \(R\)-order in a separable \(K\)-algebra such that the algebra \(\Lambda_{1}\) is a Gorenstein \(R\)-order, then \(\Lambda\) is also a Gorenstein \(R\)-order. Moreover, we prove that the induction functor \(ind:\ Mod\Lambda_{H}\rightarrow\ Mod\Lambda \) defined in Section 3, for a subgroup \(H\) of \(G\), commutes with the standard duality functor.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/937
work_keys_str_mv AT theohariapostolidith onstronglygradedgoresteinorders
AT vavatsoulash onstronglygradedgoresteinorders
first_indexed 2025-07-17T10:32:11Z
last_indexed 2025-07-17T10:32:11Z
_version_ 1837889834756079616