On strongly graded Gorestein orders
Let \(G\) be a finite group and let \(\Lambda=\oplus_{g \in G}\Lambda_{g}\) be a strongly \(G\)-graded \(R\)-algebra, where \(R\) is a commutative ring with unity. We prove that if \(R\) is a Dedekind domain with quotient field \(K\), \(\Lambda\) is an \(R\)-order in a separable \(K\)-algebra such...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/937 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-937 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-9372018-03-21T06:34:59Z On strongly graded Gorestein orders Theohari-Apostolidi, Th. Vavatsoulas, H. strongly graded rings, Gorenstein orders, symmetric algebras 16H05, 16G30, 16S35, 16G10, 16W50 Let \(G\) be a finite group and let \(\Lambda=\oplus_{g \in G}\Lambda_{g}\) be a strongly \(G\)-graded \(R\)-algebra, where \(R\) is a commutative ring with unity. We prove that if \(R\) is a Dedekind domain with quotient field \(K\), \(\Lambda\) is an \(R\)-order in a separable \(K\)-algebra such that the algebra \(\Lambda_{1}\) is a Gorenstein \(R\)-order, then \(\Lambda\) is also a Gorenstein \(R\)-order. Moreover, we prove that the induction functor \(ind:\ Mod\Lambda_{H}\rightarrow\ Mod\Lambda \) defined in Section 3, for a subgroup \(H\) of \(G\), commutes with the standard duality functor. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/937 Algebra and Discrete Mathematics; Vol 4, No 2 (2005) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/937/466 Copyright (c) 2018 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
baseUrl_str |
|
datestamp_date |
2018-03-21T06:34:59Z |
collection |
OJS |
language |
English |
topic |
strongly graded rings Gorenstein orders symmetric algebras 16H05 16G30 16S35 16G10 16W50 |
spellingShingle |
strongly graded rings Gorenstein orders symmetric algebras 16H05 16G30 16S35 16G10 16W50 Theohari-Apostolidi, Th. Vavatsoulas, H. On strongly graded Gorestein orders |
topic_facet |
strongly graded rings Gorenstein orders symmetric algebras 16H05 16G30 16S35 16G10 16W50 |
format |
Article |
author |
Theohari-Apostolidi, Th. Vavatsoulas, H. |
author_facet |
Theohari-Apostolidi, Th. Vavatsoulas, H. |
author_sort |
Theohari-Apostolidi, Th. |
title |
On strongly graded Gorestein orders |
title_short |
On strongly graded Gorestein orders |
title_full |
On strongly graded Gorestein orders |
title_fullStr |
On strongly graded Gorestein orders |
title_full_unstemmed |
On strongly graded Gorestein orders |
title_sort |
on strongly graded gorestein orders |
description |
Let \(G\) be a finite group and let \(\Lambda=\oplus_{g \in G}\Lambda_{g}\) be a strongly \(G\)-graded \(R\)-algebra, where \(R\) is a commutative ring with unity. We prove that if \(R\) is a Dedekind domain with quotient field \(K\), \(\Lambda\) is an \(R\)-order in a separable \(K\)-algebra such that the algebra \(\Lambda_{1}\) is a Gorenstein \(R\)-order, then \(\Lambda\) is also a Gorenstein \(R\)-order. Moreover, we prove that the induction functor \(ind:\ Mod\Lambda_{H}\rightarrow\ Mod\Lambda \) defined in Section 3, for a subgroup \(H\) of \(G\), commutes with the standard duality functor. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2018 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/937 |
work_keys_str_mv |
AT theohariapostolidith onstronglygradedgoresteinorders AT vavatsoulash onstronglygradedgoresteinorders |
first_indexed |
2025-07-17T10:32:11Z |
last_indexed |
2025-07-17T10:32:11Z |
_version_ |
1837889834756079616 |