On associative algebras satisfying the identity \(x^5 = 0\)
We study Kuzmin's conjecture on the index of nilpotency for the variety \(\mathcal{N} il_5\) of associative nil-algebras of degree 5. Due to Vaughan-Lee [11] the problem is reduced to that for \(k\)-generator \(\mathcal{N} il_5\)-superalgebras, where \(k\leq 5\). We confirm Kuzmin's con...
Gespeichert in:
Datum: | 2018 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/983 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-983 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-9832018-05-14T08:03:48Z On associative algebras satisfying the identity \(x^5 = 0\) Shestakov, Ivan Zhukavets, Natalia Nil-algebra, nilpotency degree, superalgebra 16R10; 16N40, 16R30, 16W55 We study Kuzmin's conjecture on the index of nilpotency for the variety \(\mathcal{N} il_5\) of associative nil-algebras of degree 5. Due to Vaughan-Lee [11] the problem is reduced to that for \(k\)-generator \(\mathcal{N} il_5\)-superalgebras, where \(k\leq 5\). We confirm Kuzmin's conjecture for 2-generator superalgebras proving that they are nilpotent of degree 15. Lugansk National Taras Shevchenko University 2018-05-14 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/983 Algebra and Discrete Mathematics; Vol 3, No 1 (2004) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/983/512 Copyright (c) 2018 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
baseUrl_str |
|
datestamp_date |
2018-05-14T08:03:48Z |
collection |
OJS |
language |
English |
topic |
Nil-algebra nilpotency degree superalgebra 16R10; 16N40 16R30 16W55 |
spellingShingle |
Nil-algebra nilpotency degree superalgebra 16R10; 16N40 16R30 16W55 Shestakov, Ivan Zhukavets, Natalia On associative algebras satisfying the identity \(x^5 = 0\) |
topic_facet |
Nil-algebra nilpotency degree superalgebra 16R10; 16N40 16R30 16W55 |
format |
Article |
author |
Shestakov, Ivan Zhukavets, Natalia |
author_facet |
Shestakov, Ivan Zhukavets, Natalia |
author_sort |
Shestakov, Ivan |
title |
On associative algebras satisfying the identity \(x^5 = 0\) |
title_short |
On associative algebras satisfying the identity \(x^5 = 0\) |
title_full |
On associative algebras satisfying the identity \(x^5 = 0\) |
title_fullStr |
On associative algebras satisfying the identity \(x^5 = 0\) |
title_full_unstemmed |
On associative algebras satisfying the identity \(x^5 = 0\) |
title_sort |
on associative algebras satisfying the identity \(x^5 = 0\) |
description |
We study Kuzmin's conjecture on the index of nilpotency for the variety \(\mathcal{N} il_5\) of associative nil-algebras of degree 5. Due to Vaughan-Lee [11] the problem is reduced to that for \(k\)-generator \(\mathcal{N} il_5\)-superalgebras, where \(k\leq 5\). We confirm Kuzmin's conjecture for 2-generator superalgebras proving that they are nilpotent of degree 15. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2018 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/983 |
work_keys_str_mv |
AT shestakovivan onassociativealgebrassatisfyingtheidentityx50 AT zhukavetsnatalia onassociativealgebrassatisfyingtheidentityx50 |
first_indexed |
2025-07-17T10:30:45Z |
last_indexed |
2025-07-17T10:30:45Z |
_version_ |
1837889836520833024 |